Surface Quasi-Conformal Mapping by Solving Beltrami Equations

  • W. Zeng
  • F. Luo
  • S. -T. Yau
  • X. D. Gu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5654)


We consider the problem of constructing quasi-conformal mappings between surfaces by solving Beltrami equations. This is of great importance for shape registration.

In the physical world, most surface deformations can be rigorously modeled as quasi-conformal maps. The local deformation is characterized by a complex-value function, Beltrami coefficient, which describes the deviation from conformality of the deformation at each point.

We propose an effective algorithm to solve the quasi-conformal map from the Beltrami coefficient. The major strategy is to deform the conformal structure of the original surface to a new conformal structure by the Beltrami coefficient, such that the quasi-conformal map becomes a conformal map. By using holomorphic differential forms, conformal maps under the new conformal structure are calculated, which are the desired quasi-conformal maps.

The efficiency and efficacy of the algorithms are demonstrated by experimental results. Furthermore, the algorithms are robust for surfaces scanned from real life, and general for surfaces with different topologies.


Quasic-Conformal Map Beltrami Equation Riemannian Metric Uniformization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Transactions on Graphics 23(3), 861–869 (2004)CrossRefGoogle Scholar
  3. 3.
    Jin, M., Kim, J., Gu, X.D.: Discrete surface ricci flow: Theory and applications. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces 2007. LNCS, vol. 4647, pp. 209–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface ricci flow. IEEE Transaction on Visualization and Computer Graphics 14(5), 1030–1043 (2008)CrossRefGoogle Scholar
  5. 5.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)MATHMathSciNetGoogle Scholar
  6. 6.
    Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: SIGGRAPH 2002, pp. 362–371 (2002)Google Scholar
  7. 7.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Computer Graphics Forum (Proc. Eurographics 2002) 21(3), 209–218 (2002)CrossRefGoogle Scholar
  8. 8.
    Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20(1), 19–27 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Transactions on Graphics 22(3), 358–363 (2003)CrossRefGoogle Scholar
  10. 10.
    Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)CrossRefGoogle Scholar
  11. 11.
    Gu, X., Yau, S.-T.: Global conformal parameterization. In: Symposium on Geometry Processing, pp. 127–137 (2003)Google Scholar
  12. 12.
    Mercat, C.: Discrete riemann surfaces and the ising model. Communications in Mathematical Physics 218(1), 177–216 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hirani, A.N.: Discrete exterior calculus. PhD thesis, California Institute of Technology (2003)Google Scholar
  14. 14.
    Jin, M., Wang, Y., Yau, S.-T., Gu, X.: Optimal global conformal surface parameterization. In: IEEE Visualization 2004, pp. 267–274 (2004)Google Scholar
  15. 15.
    Gortler, S.J., Gotsman, C., Thurston, D.: Discrete one-forms on meshes and applications to 3D mesh parameterization. Computer Aided Geometric Design 23(2), 83–112 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: Symposium on Geometry Processing, pp. 201–210 (2006)Google Scholar
  17. 17.
    Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Graph. 30(6), 917–926 (2006)CrossRefGoogle Scholar
  18. 18.
    Desbrun, M.: Discrete differential forms and applications to surface tiling. In: SCG 2006: Proceedings of the twenty-second annual symposium on Computational geometry, p. 40. ACM, New York (2006)CrossRefGoogle Scholar
  19. 19.
    Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, pp. 201–210 (2006)Google Scholar
  20. 20.
    Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.E.: Conformal virtual colon flattening. In: Symposium on Solid and Physical Modeling, pp. 85–93 (2006)Google Scholar
  21. 21.
    Wang, S., Wang, Y., Jin, M., Gu, X.D., Samaras, D.: Conformal geometry and its applications on 3d shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)CrossRefGoogle Scholar
  22. 22.
    Zeng, W., Zeng, Y., Wang, Y., Yin, X., Gu, X., Samaras, D.: 3d non-rigid surface matching and registration based on holomorphic differentials. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 1–14. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Gu, X., He, Y., Qin, H.: Manifold splines. Graphical Models 68(3), 237–254 (2006)MATHCrossRefGoogle Scholar
  24. 24.
    Guggenheimer, H.W.: Differential Geometry. Dover Publications (1977)Google Scholar
  25. 25.
    Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Henrici, P.: Applide and Computational Complex Analysis, Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions, vol. 3. Wiley-Interscience, Hoboken (1993)Google Scholar
  27. 27.
    Wang, Y., Gupta, M., Zhang, S., Samaras, D., Huang, P.: High resolution tracking of non-rigid 3D motion of densely sampled data using harmonic maps. In: Proc. International Conference on Computer Vision, pp. 388–395 (2005)Google Scholar
  28. 28.
    Gu, X., Zhang, S., Huang, P., Zhang, L., Yau, S.-T., Martin, R.: Holoimages. In: SPM 2006: Proceedings of the 2006 ACM symposium on Solid and physical modeling, pp. 129–138 (2006)Google Scholar
  29. 29.
    Chow, B., Luo, F.: Combinatorial ricci flows on surfaces. Journal Differential Geometry 63(1), 97–129 (2003)MATHMathSciNetGoogle Scholar
  30. 30.
    Luo, F.: Combinatorial yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 1–11 (2008)CrossRefGoogle Scholar
  32. 32.
    Zeng, W., Jin, M., Luo, F., Gu, X.: Computing canonical homotopy class representative using hyperbolic structure. In: IEEE International Conference on Shape Modeling and Applications (SMI 2009) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • W. Zeng
    • 1
  • F. Luo
    • 2
  • S. -T. Yau
    • 3
  • X. D. Gu
    • 1
  1. 1.Computer Science DepartmentState University of New York at Stony BrookUSA
  2. 2.Mathematics DepartmentRutgers UniversityUSA
  3. 3.Mathematics DepartmentHarvard UniversityUSA

Personalised recommendations