Advertisement

Swept Volume Parameterization for Isogeometric Analysis

  • M. Aigner
  • C. Heinrich
  • B. Jüttler
  • E. Pilgerstorfer
  • B. Simeon
  • A. -V. Vuong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5654)

Abstract

Isogeometric Analysis uses NURBS representations of the domain for performing numerical simulations. The first part of this paper presents a variational framework for generating NURBS parameterizations of swept volumes. The class of these volumes covers a number of interesting free-form shapes, such as blades of turbines and propellers, ship hulls or wings of airplanes. The second part of the paper reports the results of isogeometric analysis which were obtained with the help of the generated NURBS volume parameterizations. In particular we discuss the influence of the chosen parameterization and the incorporation of boundary conditions.

Keywords

NURBS volume parameterization Isogeometric Analysis swept volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer methods in applied mechanics and engineering 194, 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Auricchio, F., Beirão da Veiga, L.B., Buffa, A., Lovadina, C., Reali, A., Sangalli, G.: A fully ”locking-free” isogeometric approach for plane linear elasticity problems: A stream function formulation. Computer methods in applied mechanics and engineering 197, 160–172 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Mathematical Methods and Models in Applied Sciences 16, 1031–1090 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bazilevs, Y., Hughes, T.J.R.: Weak imposition of Dirichlet boundary conditions in fluid mechancis. Computer & Fluids 36, 12–26 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: theory, algorithms, and compuations. Computational Mechanics 43, 3–37 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cottrell, J.A., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in isogeometric structural analysis. Computer methods in applied mechanics and engineering 196, 4160–4183 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Computer methods in applied mechanics and engineering 195, 5257–5296 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dörfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Computer methods in applied mechanics and engineering (2008) (in press)Google Scholar
  9. 9.
    Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Computer methods in applied mechanics and engineering 197, 2732–2762 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer methods in applied mechanics and engineering 197, 4104–4124 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Computer methods in applied mechanics and engineering (2009) (in press)Google Scholar
  12. 12.
    Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L., Hughes, T.J.R.: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer methods in applied mechanics and engineering 196, 2943–2959 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    EXCITING: exact geometry simulation for optimized design of vehicles and vessels. EU Project SCP8-2007-GA-218536, http://www.exciting-project.eu
  14. 14.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley (1996)zbMATHGoogle Scholar
  15. 15.
    Chang, T.I., Lee, J.H., Kim, M.S., Hong, S.J.: Direct manipulation of generalized cylinders based on b-spline motion. The Visual Computer 14(5), 228–239 (1998)CrossRefGoogle Scholar
  16. 16.
    Chuang, J.H., Ahuja, N., Lin, C.C., Tsai, C.H., Chen, C.H.: A potential-based generalized cylinder representation. Computers & Graphics 28(6), 907–918 (2004)CrossRefGoogle Scholar
  17. 17.
    Martin, T., Cohen, E., Kirby, R.: Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Computer Aided Geometric Design (2009) (in press)Google Scholar
  18. 18.
    Piegl, L.A., Tiller, W.: The Nurbs Book. Springer, Heidelberg (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Floater, M.: Mean value coodinates. Computer Aided Geometric Design 20(11), 19–27 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. on Graphics 27(1), article no. 2 (2008)Google Scholar
  21. 21.
    Hughes, T.: The Finite Element Method. Prentice Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  22. 22.
    COMSOL multiphysics user manual, version 3.4 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Aigner
    • 1
  • C. Heinrich
    • 1
    • 2
  • B. Jüttler
    • 1
  • E. Pilgerstorfer
    • 1
  • B. Simeon
    • 3
  • A. -V. Vuong
    • 3
  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  2. 2.Siemens Corporate TechnologyMünchenGermany
  3. 3.Zentrum MathematikTechnische Universität MünchenGermany

Personalised recommendations