A Note on Unambiguity, Finite Ambiguity and Complementation in Recognizable Two-Dimensional Languages

  • Marcella Anselmo
  • Maria Madonia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5725)

Abstract

The paper deals with some open questions related to unambiguity, finite ambiguity and complementation of two-dimensional recognizable languages. We give partial answers based on the introduction of special classes of languages of “high complexity”, in a sense specified in the paper and motivated by some necessary conditions holding for recognizable and unambiguous languages. In the last part of the paper we also show a new necessary condition for recognizable two-dimensional languages on unary alphabet.

Keywords

Automata and Formal Languages Unambiguity Complement Two-dimensional languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselmo, M., Giammarresi, D., Madonia, M.: New Operators and Regular Expressions for two-dimensional languages over one-letter alphabet. Theoretical Computer Science 340(2), 408–431 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous Recognizable Two-dimensional Languages. RAIRO: Theoretical Informatics and Applications 40(2), 227–294 (2006)MathSciNetMATHGoogle Scholar
  4. 4.
    Anselmo, M., Jonoska, N., Madonia, M.: Framed Versus Unframed Two-dimensional Languages. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 79–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Anselmo, M., Madonia, M.: Deterministic two-dimensional languages over one-letter alphabet. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 147–159. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Anselmo, M., Madonia, M.: Deterministic and unambiguous two-dimensional languages over one-letter alphabet. Theoretical Computer Science 410, 1477–1485 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bertoni, A., Goldwurm, M., Lonati, V.: On the complexity of unary tiling-recognizable picture languages. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 381–392. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Cervelle, J.: Langages de figures. Rapport de stage, ENS de Lyon (1997)Google Scholar
  9. 9.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London (1974)MATHGoogle Scholar
  11. 11.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. Journal Pattern Recognition and Artificial Intelligence 6(2&3), 241–256 (1992)CrossRefMATHGoogle Scholar
  12. 12.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., et al. (eds.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Giammarresi, D., Restivo, A.: Matrix based complexity functions and recognizable picture languages. In: Grader, E., Flum, J., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games 2, pp. 315–337. Amsterdam University Press (2007)Google Scholar
  14. 14.
    Giammarresi, D., Restivo, A.: Ambiguity and complementation in recognizable two-dimensional languages. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Procs. Intern. Conf. on Theoret. Compu. Sci. IFIP, vol. 273, pp. 5–20. Springer, Boston (2008)Google Scholar
  15. 15.
    Hromkovic, J., Karumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Communication Complexity Method for Measuring Nondeterminism in Finite Automata. Information and Computation 172, 202–217 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal nfa’s over a unary alphabet. Intern. J. Found. Comput. Sci. 2, 163–182 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns. Journal of Statistical Physics 91(5-6), 909–951 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, p. 203. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Matz, O.: Dot-depth and monadic quantifier alternation over pictures. Ph.D. thesis Technical Report 99-08, RWTH Aachen (1999)Google Scholar
  20. 20.
    Matz, O.: Dot-depth, monadic quantifier alternation, and first-order closure over grids and pictures. Theoretical Computer Science 270(1-2), 1–70 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mäurer, I.: Characterizations of Recognizable Picture Series, Ph.D Thesis Universität Leipzig, Institut für Informatik, Abteilung Automaten und Sprachen (2007)Google Scholar
  22. 22.
    Potthoff, A., Seibert, S., Thomas, W.: Nondeterminism versus determinism of finite automata over directed acyclic graphs. Bull. Belgian Math. Soc. 1, 285–298 (1994)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcella Anselmo
    • 1
  • Maria Madonia
    • 2
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoFiscianoItaly
  2. 2.Dip. Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations