Advertisement

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms — Revisited

  • Andreas Maletti
  • Cătălin Ionuţ Tîrnăucă
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5725)

Abstract

Quasi-alphabetic tree bimorphisms [Steinby, Tîrnă ucă: Defining syntax-directed translations by tree bimorphisms. Theor. Comput. Sci., to appear. http://dx.doi.org/10.1016/j.tcs.2009.03.009 , 2009] are reconsidered. It is known that the class of (string) translations defined by such bimorphisms coincides with the class of syntax-directed translations. This result is extended to a smaller class of tree bimorphisms namely (linear and complete) symbol-to-symbol tree bimorphisms. Moreover, it is shown that the class of simple syntax-directed translations coincides with the class of translations defined by alphabetic tree bimorphisms (also known as finite-state relabelings). This proves that alphabetic tree bimorphisms are not sufficiently powerful to model all syntax-directed translations. Finally, it is shown that the class of tree transformations defined by quasi-alphabetic tree bimorphisms is closed under composition. The corresponding result is known in the variable-free case. Overall, the main results of [Steinby, Tîrnă ucă] are strengthened.

Keywords

syntax-directed translation regular tree language tree bimorphism natural language processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Knight, K.: Capturing practical natural language transformations. Machine Translation 21(2), 121–133 (2007)CrossRefGoogle Scholar
  3. 3.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)Google Scholar
  4. 4.
    Nivat, M., Podelski, A. (eds.): Tree Automata and Languages. North-Holland, Amsterdam (1992)zbMATHGoogle Scholar
  5. 5.
    Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math. Syst. Theory 9(3), 198–231 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput. Sci. 20(1), 33–93 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bozapalidis, S.: Alphabetic tree relations. Theor. Comput. Sci. 99(2), 177–211 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Takahashi, M.: Primitive transformations of regular sets and recognizable sets. In: Proc. ICALP, pp. 475–480. North-Holland, Amsterdam (1972)Google Scholar
  9. 9.
    Steinby, M.: On certain algebraically defined tree transformations. In: Proc. Algebra, Combinatorics and Logic in Computer Science. Colloquia Mathematica Societatis János Bolyai, vol. 42, pp. 745–764. North-Holland, Amsterdam (1986)Google Scholar
  10. 10.
    Irons, E.T.: A syntax directed compiler for ALGOL 60. Comm. ACM 4(1), 51–55 (1961)CrossRefzbMATHGoogle Scholar
  11. 11.
    Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. COLING, pp. 253–258. ACL (1990)Google Scholar
  12. 12.
    Satta, G., Peserico, E.: Some computational complexity results for synchronous context-free grammars. In: Proc. HLT/EMNLP, pp. 803–810. ACL (2005)Google Scholar
  13. 13.
    Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. TAG+7, pp. 88–95 (2004)Google Scholar
  14. 14.
    Aho, A.V., Ullman, J.D.: Parsing. The Theory of Parsing, Translation, and Compiling, vol. 1. Prentice-Hall, Englewood Cliffs (1972)zbMATHGoogle Scholar
  15. 15.
    Steinby, M., Tîrnăucă, C.I.: Defining syntax-directed translations by tree bimorphisms. Theor. Comput. Sci. (to appear, 2009), http://dx.doi.org/10.1016/j.tcs.2009.03.009
  16. 16.
    Aho, A.V., Ullman, J.D.: Properties of syntax directed translations. J. Comput. Syst. Sci. 3(3), 319–334 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assembler. J. Comput. Syst. Sci. 3(1), 37–56 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree automata—techniques and applications (2007), http://tata.gforge.inria.fr/
  19. 19.
    Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory of Computing, pp. 143–172. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  20. 20.
    Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput. 206(9-10), 1187–1196 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maletti, A., Tîrnăucă, C.I.: Properties of quasi-alphabetic tree bimorphisms (unpublished 2009), http://arxiv.org/abs/0906.2369v1

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Maletti
    • 1
  • Cătălin Ionuţ Tîrnăucă
    • 1
  1. 1.Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations