Advertisement

A Backward and a Forward Simulation for Weighted Tree Automata

  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5725)

Abstract

Two types of simulations for weighted tree automata (wta) are considered. Wta process trees and assign a weight to each of them. The weights are taken from a semiring. The two types of simulations work for wta over additively idempotent, commutative semirings and can be used to reduce the size of wta while preserving their semantics. Such reductions are an important tool in automata toolkits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton. In: Theory of Machines and Computations, pp. 189–196. Academic Press, London (1971)CrossRefGoogle Scholar
  4. 4.
    Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization of tree automata. Theoret. Comput. Sci. (to appear, 2009), http://dx.doi.org/10.1016/j.tcs.2009.03.022
  5. 5.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proc. FOCS, pp. 125–129. IEEE Computer Society Press, Los Alamitos (1972)Google Scholar
  6. 6.
    Gramlich, G., Schnitger, G.: Minimizing nFA’s and regular expressions. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Gramlich, G., Schnitger, G.: Minimizing nfa’s and regular expressions. J. Comput. System Sci. 73(6), 908–923 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition complexity assuming PNP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Abdulla, P.A., Högberg, J., Kaati, L.: Bisimulation minimization of tree automata. Int. J. Found. Comput. Sci. 18(4), 699–713 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing simulations over tree automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Composed bisimulation for tree automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 212–222. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Maletti, A.: Minimizing deterministic weighted tree automata. Inform. and Comput. (to appear, 2009), http://dx.doi.org/10.1016/j.ic.2009.01.004
  13. 13.
    Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 229–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoret. Comput. Sci. 18(2), 115–148 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32(1), 1–33 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3), 417–463 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Borchardt, B.: The Theory of Recognizable Tree Series. PhD thesis, Technische Universität Dresden (2005)Google Scholar
  18. 18.
    Högberg, J., Maletti, A., May, J.: Bisimulation minimisation of weighted tree automata. Technical Report ISI-TR-634, University of Southern California (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations