Advertisement

Cycle-Free Finite Automata in Partial Iterative Semirings

  • Stephen L. Bloom
  • Zoltan Ésik
  • Werner Kuich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5725)

Abstract

We consider partial Conway semirings and partial iteration semirings, both introduced by Bloom, Ésik, Kuich [2]. We develop a theory of cycle-free elements in partial iterative semirings that allows us to define cycle-free finite automata in partial iterative semirings and to prove a Kleene Theorem. We apply these results to power series over a graded monoid with discounting.

Keywords

Unique Solution Power Series Transition Matrix Formal Power Series Transition Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes. EATCS monographs on Theoretical Computer Science. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bloom, S.L., Ésik, Z., Kuich, W.: Partial Conway and iteration semirings. Fundamenta Informaticae 86, 19–40 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)zbMATHGoogle Scholar
  4. 4.
    Droste, M., Kuich, W.: Semirings and formal power series. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs on Theoretical Computer Science, ch. 1. Springer, Heidelberg (to appear, 2009)CrossRefGoogle Scholar
  5. 5.
    Droste, M., Kuske, D.: Skew and infinitary formal power series. Theoretical Computer Science 366, 199–227 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Droste, M., Sakarovitch, J., Vogler, H.: Weighted automata with discounting. Information Processing Letters 108, 23–28 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Esik, Z., Kuich, W.: Equational axioms for a theory of automata. In: Martin-Vide, C., Mitrana, V., Paun, G. (eds.) Formal Languages and Applications. Studies in Fuzziness and Soft Computing, 148, pp. 183–196. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Esik, Z., Kuich, W.: Modern Automata Theory (2007), www.dmg.tuwien.ac.at/kuich
  9. 9.
    Ésik, Z., Kuich, W.: Finite Automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, ch. 3. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (to appear, 2009)Google Scholar
  10. 10.
    Kuich, W.: Kleene Theorems for skew formal power series. Acta Cybernetica 17, 719–749 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sakarovitch, J.: Éléments de théorie des automates. Vuibert (2003)Google Scholar
  13. 13.
    Sakarovitch, J.: Rational and recognizable power series. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs on Theoretical Computer Science, ch. 4. Springer, Heidelberg (to appear, 2009)Google Scholar
  14. 14.
    Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4, 245–270 (1961)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephen L. Bloom
    • 1
  • Zoltan Ésik
    • 2
  • Werner Kuich
    • 3
  1. 1.Dept. of Computer ScienceStevens Institute of TechnologyHobokenUSA
  2. 2.Dept. of Computer ScienceUniversity of SzegedHungary
  3. 3.Institut für Diskrete Mathematik und GeometrieTechnische Universität WienAustria

Personalised recommendations