Private Intersection of Certified Sets

  • Jan Camenisch
  • Gregory M. Zaverucha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5628)

Abstract

This paper introduces certified sets to the private set intersection problem. A private set intersection protocol allows Alice and Bob to jointly compute the set intersection function without revealing their input sets. Since the inputs are private, malicious participants may choose their sets arbitrarily and may use this flexibility to affect the result or learn more about the input of an honest participant. With certified sets, a trusted party ensures the inputs are valid and binds them to each participant. The strength of the malicious model with certified inputs increases the applicability of private set intersection to real world problems. With respect to efficiency the new certified set intersection protocol improves existing malicious model private set intersection protocols by a constant factor.

Keywords

private set intersection secure two-party computation certified sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE Journal on Selected Areas in Communications 18, 593–610 (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J.: Pippenger’s exponentiation algorithm. Manuscript, http://cr.yp.to/papers.html#pippenger
  4. 4.
    Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the socialist millionaires’ problem. Discrete and Applied Math. 111, 23–36 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report TR 260, Institute for Theoretical Computer Science, ETH Zürich (1997)Google Scholar
  6. 6.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the clone wars: efficient periodic n-times anonymous authentication. In: Proceedings of CCS 2006, pp. 201–210. ACM Press, New York (2006)Google Scholar
  9. 9.
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Elgamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1986)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  13. 13.
    National Institute of Standards and Technology. Digital signature standard (DSS). FIPS PUB 186-2 (2000)Google Scholar
  14. 14.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Furukawa, J.: Efficient verifiable shuffle decryption and its requirement of unlinkability. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 319–332. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Goldreich, O.: The Foundations of Cryptography – Volume 2 Basic Applications. Cambridge University Press, New York (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Hohenberger, S., Weis, S.: Honest-verifier private disjointness testing without random oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277–294. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Kissner, L., Song, D.: Private and threshold set intersection. Technical report CMU-CS-04-182, School of Computer Science, Carnegie Mellon University (2004)Google Scholar
  22. 22.
    Kissner, L., Song, D.: Privacy preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14, 255–293 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Paillier, P.: Public-key cryptosystems based on composite residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Pass, R.: On deniability in the common reference and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Ye, Q., Wang, H., Pieprzyk, J., Zhang, X.-M.: Efficient disjointness test for private datasets. To appear at ACISP (2009)Google Scholar
  27. 27.
    Extended technical report version of this paperGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jan Camenisch
    • 1
  • Gregory M. Zaverucha
    • 2
  1. 1.Zürich Research LaboratoryIBM ResearchRüschlikonSwitzerland
  2. 2.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations