Advertisement

Combining Atomic Force Microscopy and Depth-Sensing Instruments for the Nanometer-Scale Mechanical Characterization of Soft Matter

  • Davide Tranchida
  • Stefano Piccarolo
Chapter
Part of the NanoScience and Technology book series (NANO)

Summary

Complex materials exhibit a hierarchical structure where a gradient of features on nanometer scale is induced by the synthetic route eventually enhanced by the loading condition. The nanometer scale at which individual components arrange, determining their properties, is a current challenge of mechanical testing. In this work, a survey on nanoindentation is outlined based on the comparison of results obtained by Atomic Force Microscopy and Depth-Sensing Instruments and their combination. An Atomic Force Microscope equipped with a Force Transducer gives indeed the possibility to scan the sample surface in contact mode, thereby allowing one to choose a suitable position for the nanoindentation, as well as imaging the residual imprint left on the sample. The analysis of the applied load vs. penetration depth curve, also called force curve, shows the limitations of current approaches to determine elastic moduli of compliant viscoelastic materials. Significant deviations from the expected values are observed even after optimizing testing conditions, so as to minimize the artifacts like viscoelastic effects or pile-up. As rigorous approaches are yet to be applied to the interpretation of force curves accounting also of viscoelastic material behavior, an empirical calibration recently proposed by the authors is verified against a set of data on model samples spanning a range of moduli, typical of compliant materials and close to each other, so as to challenge the resolution potential of this method, as well as others in use in the literature.

Key words

Atomic force microscopy Depth-sensing instrument Nanoindentation Soft materials Polymers Elastic Young’s modulus Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Fratzl, R. Weinkamer Prog. Mater. Sci. 52 1263 (2007)CrossRefGoogle Scholar
  2. 2.
    M.A. Meyers, P.Y. Chen, A.Y.M. Lin, Y. Seki Prog. Mater. Sci. 53 1 (2008)CrossRefGoogle Scholar
  3. 3.
    F.J. Baltà-Calleja Adv. Polym. Sci. 66 117 (1985)Google Scholar
  4. 4.
    A. Flores, F.J. Baltà-Calleja, D.C. Bassett J. Polym. Sci. B 37 3151 (1999)Google Scholar
  5. 5.
    F.J. Baltà-Calleja, A. Flores, F. Ania, D.C. Bassett J. Mater. Sci 35 1315 (2000)Google Scholar
  6. 6.
    A. Flores, F.J. Baltà-Calleja, G.E. Attenburrow, D.C. Bassett Polymer 41 5431 (2000)Google Scholar
  7. 7.
    S. Fakirov, B. Krasteva J. Macromol. Sci. Phys. B 39 297 (2000).Google Scholar
  8. 8.
    Y.P. Zheng, A.F.T. Mak, A.K.L. Leung J. Rehabil. Res. Dev. 38 487 (2001)Google Scholar
  9. 9.
    L.A. Setton, V.C. Mow, F.J. Muller, J.C. Pita, D.S. Howell J Orthopaed Res 12 451(1994)Google Scholar
  10. 10.
    K.A. Athanasiou, M.P. Rosenwasser, J.A. Buckwalter, T.I. Malinin, V.C. Mow J. Orthopaed. Res. 9 330 (1991)Google Scholar
  11. 11.
    J.H. Kinney, S.J. Marshall, G.W. Marshall Crit. Rev. Oral Biol. Med. 14 13 (2003)CrossRefGoogle Scholar
  12. 12.
    P.E. Riches, N.M. Everitt, D.S. McNally J. Biomech. 33 1551 (2000)Google Scholar
  13. 13.
    A.J. Rapoff, R.G. Rinaldi, J.L. Hotzman, D.J. Daegling Am. J. Phys. Anthrop. 135 100 (2008)CrossRefGoogle Scholar
  14. 14.
    W.C. Oliver, G.M. Pharr J. Mater. Res. 7 1564 (1992)Google Scholar
  15. 15.
    W.C. Oliver, G.M. Pharr J. Mater. Res. 19 3 (2004)Google Scholar
  16. 16.
    D. Tranchida, S. Piccarolo Macr. Rap. Commun. 26 1800 (2005)CrossRefGoogle Scholar
  17. 17.
    D. Tranchida, S. Piccarolo, J. Loos, A. Alexeev Macromolecules 40 1259 (2007)CrossRefADSGoogle Scholar
  18. 18.
    D. Tranchida, S. Piccarolo, J. Loos, A. Alexeev Appl. Phys. Lett. 89 171905 (2006)CrossRefADSGoogle Scholar
  19. 19.
    T.C.T. Ting J. Appl. Mech. 33 845 (1966)Google Scholar
  20. 20.
    Y.T. Cheng, C.M. Cheng J. Mater. Res. 20 1046 (2005)Google Scholar
  21. 21.
    L. Cheng, X. Xia, L.E. Scriven, W.W. Gerberich Mech. Mater. 37 213 (2005)Google Scholar
  22. 22.
    M.L. Oyen, R.F. Cook J. Mater. Res. 18 139 (2003)Google Scholar
  23. 23.
    C.C. White, M.R. Van Landingham, P.L. Drzal, N.K. Chang, S.H. Chang J. Polym. Sci. B 43 1812 (2005)Google Scholar
  24. 24.
    M.R. Van Landingham, N.K. Chang, P.L. Drzal, C.C. White, S.H. Chang J. Polym. Sci. B 43 1794 (2005)Google Scholar
  25. 25.
    C.A. Tweedie, K.J. Van Vliet J. Mater. Res. 21 1576 (2006)Google Scholar
  26. 26.
    M. Fujikane, M. Leszczyski, S. Nagao, T. Nakayama, S. Yamanaka, K. Niihara, R. Nowak J Alloy Comp. 450 405 (2008)CrossRefGoogle Scholar
  27. 27.
    B. Cappella, D. Silbernagl Thin Solid Films 516 1952 (2008)CrossRefADSGoogle Scholar
  28. 28.
    B. Bhushan, X. Li Int. Mater. Rev. 48 125 (2003)CrossRefGoogle Scholar
  29. 29.
    S. Umemura, Y. Andoh, S. Hirono, T. Miyamoto, R. Kaneko Philos. Mag. A 74 1143 (1996)CrossRefADSGoogle Scholar
  30. 30.
    S. Lafaye, M. Troyon Wear 261 905 (2006)CrossRefGoogle Scholar
  31. 31.
    B. Cappella, G. Dietler Surf. Sci. Rep. 34 1 (1999)CrossRefGoogle Scholar
  32. 32.
    H.J. Butt, B. Cappella, M. Kappl Sur. Sci. Rep. 59 1 (2005)CrossRefGoogle Scholar
  33. 33.
    D. Tranchida, S. Kiflie, Z. Piccarolo ‘Atomic Force Microscope Nanoindentations to Reliably Measure the Young’s Modulus of Soft Matter’ in Modern Research and Educational Topics in Microscopy (Formatex, Badajoz, 2007)Google Scholar
  34. 34.
    V.V. Tsukruk, V.V. Gorbunov, Z. Huang, S.A. Chizhik Polym. Int. 49 441 (2000)Google Scholar
  35. 35.
    H.W. Hao, A.M. Barò Saenz J. Vac. Sci. Technol. B 9 1323 (1991)Google Scholar
  36. 36.
    N.A. Burnham, X. Chen, C.S. Hodges, G.A. Matei, E.J. Thoreson, C.J. Roberts, M.C. Davies, S.J.B. Tendler Nanotechnology 14 1 (2003)Google Scholar
  37. 37.
    D. Tranchida, S. Piccarolo, M. Soliman Macromolecules 39 4547 (2006)ADSGoogle Scholar
  38. 38.
    S.A. Chizhik, Z. Huang, V.V. Gorbunov, N.K. Myshkin, V.V. Tsukruk Langmuir 14 2606 (1998)Google Scholar
  39. 39.
    V.V. Tsukruk, Z. Huang, S.A. Chizhik, V.V. Gorbunov J. Mater. Sci. 33 4905 (1998)Google Scholar
  40. 40.
    K. Herrmann, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, R. Seemann Thin Solid Films 377 394 (2000)CrossRefADSGoogle Scholar
  41. 41.
    M.S. Bischel, M.R. VanLandingham, R.F. Eduljee, J.W. Gillespie, J.M. Schultz J. Mater. Sci. 35 221 (2000)Google Scholar
  42. 42.
    B. Du, J. Liu, Q. Zhang, T. He Polymer 42 5901 (2001)CrossRefGoogle Scholar
  43. 43.
    V.V. Tsukruk, A. Sidorenko, H. Yang Polymer 43 1695 (2002)CrossRefGoogle Scholar
  44. 44.
    B.D. Beake, G.J. Leggett Polymer 43 319 (2002)Google Scholar
  45. 45.
    B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek Philos. Mag. A 74 1117 (1996)Google Scholar
  46. 46.
    M.E. Barbour, R.P. Shellis Phys. Med. Biol. 52 899 (2007)Google Scholar
  47. 47.
    K.S. Kanaga Karuppiah, A.L. Bruck, S. Sundararajan, J. Wang, Z. Lin, Z.H. Xu, X. Li Acta Biomater. 4 1401(2008)CrossRefGoogle Scholar
  48. 48.
    T. Chen, S. Yao, K. Wang, H. Wang Nucl. Instrum. Methods Phys. Res. B 266 3091 (2008)ADSGoogle Scholar
  49. 49.
    J.D. Torrey, R.K. Bordia J. Eur. Ceram. Soc. 28 253 (2008)Google Scholar
  50. 50.
    M. Nowicki, A. Richter, B. Wolf, H. Kaczmarek Polymer 44 6599 (2003)CrossRefGoogle Scholar
  51. 51.
    S. Tajima, K. Komvopoulos J. Appl. Phys. 101 014307 (2007)CrossRefADSGoogle Scholar
  52. 52.
    R. Bandorf, D.M. Paulkowski, K.I. Schiffmann, R.L.A. Kuster J. Phys. Condens. Matter 20 354018 (2008)Google Scholar
  53. 53.
    K.R. Morasch, D.F. Bahr Thin Solid Films 515 3298 (2007)Google Scholar
  54. 54.
    K.I. Schiffmann, A. Hieke Wear 254 565 (2003)Google Scholar
  55. 55.
    K.B. Geng, F.Q. Yang, T. Druffel, E.A. Grulke Polymer 46 11768 (2005)Google Scholar
  56. 56.
    V. Brucato, S. Piccarolo, V. La Carrubba Chem. Eng. Sci. 57 4129 (2002)CrossRefGoogle Scholar
  57. 57.
    B. Wolf Cryst. Res. Technol. 35 377 (2000)Google Scholar
  58. 58.
    Z. Xiangyang, J. Zhuangde, W. Hairong, Y. Ruixia Mater. Sci. Eng. A 488 318 (2008)CrossRefGoogle Scholar
  59. 59.
    Y.H. Lee, J.H. Hahn, S.H. Nahm, J.I. Jang, D. Kwon J. Phys. D Appl. Phys. 41 074027 (2008)Google Scholar
  60. 60.
    Y.H. Lee, U. Baek, Y.I. Kim, S.H. Nahm Mater. Lett. 61 4039 (2007)Google Scholar
  61. 61.
    R. Garcia, R. Perez Surf. Sci. Rep. 47 197 (2002)zbMATHCrossRefGoogle Scholar
  62. 62.
    T.H. Fang, W.J. Chang Microel. J. 35 595 (2004)Google Scholar
  63. 63.
    J.S. Villarrubia J. Res. NIST 102 425 (1997)Google Scholar
  64. 64.
    D. Tranchida, S. Piccarolo, R.A.C. Deblieck Meas. Sci. Technol. 17 2630 (2006)Google Scholar
  65. 65.
    I. Hiroshi, F. Toshiyuki, I. Shingo Rev. Sci. Instrum. 77 103704 (2006)Google Scholar
  66. 66.
    D. Tranchida, Z. Kiflie, S. Piccarolo Macromolecules 40 7366 (2007)CrossRefADSGoogle Scholar
  67. 67.
    I. Karapanagiotis, D.F. Evans, W.W. Gerberich Polymer 43 1343 (2002)Google Scholar
  68. 68.
    I.N. Sneddon Int. J. Eng. Sci. 3 47 (1965)CrossRefGoogle Scholar
  69. 69.
    Z. Bartczak Polymer 46 10339 (2005)Google Scholar
  70. 70.
    A.C. Fischer Cripps Nanoindentation (Springer, New York, 2002)Google Scholar
  71. 71.
    A. Pawlak, A. Galeski Macromolecules 38 9688 (2005)CrossRefADSGoogle Scholar
  72. 72.
    A.J. Bushby, D.J. Dunstan J. Mater. Res. 19 137 (2004)Google Scholar
  73. 73.
    Y. Zhou, P.K. Mallick Polym. Eng. Sci. 42 2449 (2002)Google Scholar
  74. 74.
    R.E. Robertson J. Appl. Polym. Sci. 7 443 (1963)Google Scholar
  75. 75.
    J.A. Roetling Polymer 6 311 (1965)Google Scholar
  76. 76.
    T. Kazmierczak, A. Galeski, A.S. Argon Polymer 46 8926 (2005)Google Scholar
  77. 77.
    D. Tranchida, Z. Bartczak, D. Bielinski, A. Galeski, S. Piccarolo Polymer 50 1939 (2009)Google Scholar
  78. 78.
    J.L. Loubet, J.M. Georges, J. Meille Nanoindentation Techniques in Materials Science and Engineering (ASTM, Philadelphia, 1986)Google Scholar
  79. 79.
    G. Hochstetter, A. Jimenez, J.L. Loubet J. Macromol. Sci. B Phys. 38 681 (1999)Google Scholar
  80. 80.
    A. Carpinteri, S. Puzzi Eng. Fract. Mech. 73 2110 (2006)CrossRefGoogle Scholar
  81. 81.
    R.K. Abu Al-Rub Mech. Mater. 39 787 (2007)Google Scholar
  82. 82.
    M. Zhao, W.S. Slaughter, M. Li, S.X. Mao Acta Mater. 51 4461 (2003)Google Scholar
  83. 83.
    D. Chicot Mat. Sci. Eng. A 499 454 (2009)CrossRefGoogle Scholar
  84. 84.
    J. Boussinesq Applications des Potentiels à l’Etude de l’Equilibre et du Mouvement des Solides Elastiques. (Gauthier-Villars, Paris, 1885)Google Scholar
  85. 85.
    A.E.H. Love Philos. Trans. 228 377 (1929)Google Scholar
  86. 86.
    A.E.H. Love Q. J. Math. 10 161 (1939)Google Scholar
  87. 87.
    H. Hertz Miscellaneous Papers (MacMillan, New York, 1896)Google Scholar
  88. 88.
    L.D. Landau, E.M. Lifshitz Theory of Elasticity (Pergamon Press, Oxford, 1986)Google Scholar
  89. 89.
    S.I. Bulichev Zavodsk Lab. 53 76 (1987)Google Scholar
  90. 90.
    G.M. Pharr, W.C. Oliver, F.R. Brotzen J. Mater. Res. 7 613 (1992)Google Scholar
  91. 91.
    Y.T. Cheng, C.M. Cheng J. Appl. Phys. 84 1284 (1998)Google Scholar
  92. 92.
    J. Zhou, B. Berry, J.F. Douglas, A. Karim, C.R. Snyder, C. Soles Nanotechnology 19 495703 (2008)CrossRefGoogle Scholar
  93. 93.
    J.C. Grunlan, X.Y. Xia, D. Rowenhorst, W.W. Gerberich Rev Sci Instr 72 2804(2001).Google Scholar
  94. 94.
    L. Calabri, N. Pugno, A. Rota, D. Marchetto, S. Valeri J. Phys. Condens. Matter. 19 395002 (2007)CrossRefGoogle Scholar
  95. 95.
    S.B. Liu, A. Peyronnel, Q.J. Wang, L.M. Keer Trib. Lett. 18 303 (2005)Google Scholar
  96. 96.
    R. Saha, Z.Y. Xue, Y. Huang, W.D. Nix J Mech. Phys. Solids 49 1997 (2001)Google Scholar
  97. 97.
    T.H. Fang, W.J. Chang Micro Eng. 65 231 (2003)Google Scholar
  98. 98.
    P.J. Burnett, D.S. Rickerby Thin Solid Films 148 51 (1987)Google Scholar
  99. 99.
    P.J. Burnett, D.S. Rickerby Thin Solid Films 148 41 (1987)Google Scholar
  100. 100.
    M.F. Doerner, D.S. Gardner, W.D. Nix J. Mater. Res. 1 845 (1986)Google Scholar
  101. 101.
    B.D. Fabes, W.C. Oliver, R.A. McKee J. Mater. Res. 7 3056 (1992)Google Scholar
  102. 102.
    D. Stone, W.R. LaFontaine, P.J. Alexopoulos J. Mater. Res. 3 141 (1988)Google Scholar
  103. 103.
    T.Y. Tsui, W.C. Oliver, G.M. Pharr Mater. Res. Soc. Symp. Proc. 436 147 (1997)Google Scholar
  104. 104.
    S.H. Chen, T.C. Wang Eur J Mech A Solids 20 739 (2001)Google Scholar
  105. 105.
    S.H. Chen, T.C. Wang Int. J. Solids Struct. 39 1241 (2002)zbMATHCrossRefGoogle Scholar
  106. 106.
    S.H. Chen, L. Liu, T. Wang Acta Mater. 52 1089 (2004)CrossRefGoogle Scholar
  107. 107.
    N. Schwarzer, F. Richter, G. Hecht Surf. Coat. Technol. 114 292 (1999)CrossRefGoogle Scholar
  108. 108.
    B. Mailhot, A. Rivaton, J.L. Gardette, A. Moustaghfir, E. Tomasella, M. Jacquet, X.G. Ma, K. Kornvopoulos J. Appl. Phys. 99 104310 (2006)CrossRefADSGoogle Scholar
  109. 109.
    D. Tranchida, S. Piccarolo Polymer 46 4032 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physical ChemistryUniversity of SiegenSiegenGermany
  2. 2.Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversità di Palermo Viale delle ScienzePalermoItaly

Personalised recommendations