Scanning Probe Microscopy as a Tool Applied to Agriculture

  • Fabio Lima Leite
  • Alexandra Manzoli
  • Paulo Sérgio Paula de HerrmannJr
  • Osvaldo Novais OliveiraJr
  • Luiz Henrique Capparelli Mattoso
Chapter
Part of the NanoScience and Technology book series (NANO)

Summary

The control of materials properties and processes at the molecular level inherent in nanotechnology has been exploited in many areas of science and technology, including agriculture where nanotech methods are used in release of herbicides and monitoring of food quality and environmental impact. Atomic force microscopy (AFM) and related techniques are among the most employed nanotech methods, particularly with the possibility of direct measurements of intermolecular interactions. This chapter presents a brief review of the applications of AFM in agriculture that may be categorized into four main topics, namely thin films, research on nanomaterials and nanostructures, biological systems and natural fibers, and soils science. Examples of recent applications will be provided to give the reader a sense of the power of the technique and potential contributions to agriculture.

Key words

Agriculture Atomic force microscopy Atomic force spectroscopy Nanoscience Nanotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Liu, Y.W. Zhang, C. Lu, Phys. Rev. B 68, 195314 (2003).CrossRefADSGoogle Scholar
  2. 2.
    M.S.B. Brandão, Self-Assembly and Self-Organization of Surfactants in Agriculture, vol. 4 ed. by A.T. Hubbard. Encyclopedia of Surface and Colloid Science, 1st edn. (CRC , 2002).Google Scholar
  3. 3.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57–61 (2002).CrossRefPubMedADSGoogle Scholar
  4. 4.
    A.M. Morales, C.M. Lieber, Science 279, 208–211 (1998).CrossRefPubMedADSGoogle Scholar
  5. 5.
    T. Ohgi, H.Y. Sheng, H. Nejoh, App. Surf. Sci. 130–132, 919–924 (1998).CrossRefGoogle Scholar
  6. 6.
    I. Sokolov, Y.Y. Kievsky, J.M. Kaszpurenko, Small 3, 419–423 (2007).CrossRefPubMedGoogle Scholar
  7. 7.
    C. Moraru, C. Panchapakesan, Q. Huang, P. Takhistov, S. Liu, J. Kokini, Nanotechnology: A New Frontier in Food Science, vol. 57, number 12 (Institute of Food Technologists, December 2003).Google Scholar
  8. 8.
  9. 9.
    R.C. Barry, Y.H. Lin, J. Wang, G.D. Liu, C.A. Timchalk, J. Exp. Sci. Environ. Epidemiol. 19, 1–18 (2009).CrossRefGoogle Scholar
  10. 10.
    S.Q. Liu, L. Yuan, X.L. Yue, Z.Z. Zheng, Z.Y. Tang, Adv. Powder Technol. 19, 419–441 (2008).CrossRefGoogle Scholar
  11. 11.
    S. Stolnik, K. Shakesheff, Biotechnol. Lett. 31, 1–11 (2009).CrossRefPubMedGoogle Scholar
  12. 12.
    E. Sivamani, R.K. DeLong, R.D. Qu, Plant Cell Rep. 28, 213–221 (2009).CrossRefPubMedGoogle Scholar
  13. 13.
    A. Kulamarva, P.M.V. Raja, J. Bhathena, H. Chen, S. Talapatra, P.M. Ajayan, O. Nalamasu, S. Prakash, Nanotechnology 20, 025612 (2009).CrossRefADSGoogle Scholar
  14. 14.
    X.F. Xie, B. Goodell, D.J. Zhang, D.C. Nagle, Y.H. Qian, M.L. Peterson, J. Jellison, Bioresour. Tech. 100, 1797–1802 (2009).CrossRefGoogle Scholar
  15. 15.
    A. Otten, S. Herminghaus, Langmuir 20, 2405–2408 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    Y. Shimizu, T. Sasaki, T. Kodaira, K. Kawaguchi, K. Terashima, N. Koshikazi, Chem. Phys. Lett. 370, 774–780 (2003).CrossRefADSGoogle Scholar
  17. 17.
    S. Chan, X. Su, M. Yamakawa Detecting, identifying and sequencing of biomolecules using controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy, useful in the fields of molecular biology. Patent Number(s): WO2004038037-A2; US2004126820-A1; AU2003278852-A1; EP1546983-A2; JP2006501485-W; CN1682237-A; AU2003278852-A8; US2006281119-A1; US7476786-B2.Google Scholar
  18. 18.
    S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Science 294, 137–141 (2001).CrossRefPubMedADSGoogle Scholar
  19. 19.
    E.S. Medeiros, L.H.C. Mattoso, E.N. Ito, K.S. Gregorski, G.H. Robertson, R.D. Offeman, D.F. Wood, W.J. Orts, S.H. Imam, J. Biobased Mat. Bionenerg. 2, 231–242 (2008).Google Scholar
  20. 20.
    F.L. Leite, P.S.P. Herrmann, J. Adhes. Sci. Technol. 19, 365–405 (2005).Google Scholar
  21. 21.
    G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Appl. Phys. Lett. 40, 178–180 (1982).CrossRefADSGoogle Scholar
  22. 22.
    G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930–933 (1986).CrossRefPubMedADSGoogle Scholar
  23. 23.
    S.Y. He, G.P. Feng, H.S. Yang, Y. Wu, Y.F. Li, Postharvest Biol. Technol. 33, 263–273 (2004).CrossRefGoogle Scholar
  24. 24.
    E.A. Veraverbeke, P. Verboven, P.V. Oostveldt, B.M. Nicolaï, Postharvest Biol. Technol. 30, 75–88 (2003).CrossRefGoogle Scholar
  25. 25.
    H. Yang, Y. Wang, S. Lai, H. An, Y. Li, F. Chen, J Food Sci 72, R65–R75 (2007).CrossRefPubMedGoogle Scholar
  26. 26.
    W.A. Ducker, T.J. Senden, R.M. Pashley, Nature 353, 239–241 (1991).CrossRefADSGoogle Scholar
  27. 27.
    O.B.G. Assis, L.A. Forato, de D. Britto, Higiene Alimentar 22, 99–106 (2008).Google Scholar
  28. 28.
    G.G. Roberts, Langmuir-Blodgett Films (Plenum, New York, 1990).Google Scholar
  29. 29.
    G. Decher, J.D. Hong, J. Schmitt, Thin Solid Films 210, 831–835 (1992).CrossRefADSGoogle Scholar
  30. 30.
    R.F.M. Lobo, M.A. Pereira-da-Silva, M. Raposo, R.M. Faria, O.N. Oliveira Jr, Nanotechnology 14, 101–108 (2003).CrossRefADSGoogle Scholar
  31. 31.
    L.G. Paterno, L.H.C. Mattoso, Polymer 42, 5239–5245 (2001).CrossRefGoogle Scholar
  32. 32.
    A. Riul Jr, A. Dhanabalan, M.A. Cotta, P.S.P. Herrmann, L.H.C. Mattoso, A.G. MacDiarmid, O.N. Oliveira Jr, Synth. Met. 101, 830–831 (1999).CrossRefGoogle Scholar
  33. 33.
    D. Volpati, A.E. Job, R.F. Aroca, C.J.L. Constantino, J. Phys. Chem. B 12, 3894–3902 (2008).CrossRefGoogle Scholar
  34. 34.
    F.L. Leite, L.G. Paterno, C.E. Borato, P.S.P. Herrmann, O.N. Oliveira Jr, L.H.C. Mattoso, Polymer 46, 12503–12510 (2005).CrossRefGoogle Scholar
  35. 35.
    F.L. Leite, M. Oliveira Neto, L.G. Paterno, M.R.M. Ballestero, I. Polikarpov, Y.P. Mascarenhas, P.S.P. Herrmann, L.H.C. Mattoso, O.N. Oliveira Jr, J. Coll. Interface Sci. 316, 376–387 (2007).CrossRefGoogle Scholar
  36. 36.
    E.C. Venancio, L.G. Paterno, C.E. Borato, A. Firmino, L.H.C. Mattoso, J. Braz. Chem. Soc. 16, 558–564 (2005).Google Scholar
  37. 37.
    K. Xu, L.H. Zhu, H.Q. Tang, Electrochim Acta 52, 723–727 (2006).CrossRefGoogle Scholar
  38. 38.
    D.H. Zhang, Y.Y. Wang, Mat. Sci. Eng. B 134, 9–19 (2006).CrossRefGoogle Scholar
  39. 39.
    L.G. Paterno, L.H.C. Mattoso, J. Appl. Polym. Sci. 83, 1309–1316 (2002).Google Scholar
  40. 40.
    K. Wohnrath, J.R. Garcia, F.C. Nart, A.A. Batista, O.N. Oliveira Jr, Thin Solid Films 402, 272–279 (2002).CrossRefADSGoogle Scholar
  41. 41.
    A. Marletta, C.A. Olivati, M. Ferreira, M.L. Veiga, D.T. Balogh, R.M. Faria, O.N. Oliveira Jr, Braz. J. Phys. 36, 496–498 (2006).CrossRefGoogle Scholar
  42. 42.
    L. Gaffo, C.J.L. Constantino, W.C. Moreira, R.F. Aroca, O.N. Oliveira Jr, Langmuir 18, 3561–3566 (2002).CrossRefGoogle Scholar
  43. 43.
    K. Wonhrath, S.V. Mello, M.A. Pereira-da-Silva, O.N. Oliveira Jr, Synth. Met. 121, 1425–1426 (2001).CrossRefGoogle Scholar
  44. 44.
    D. Pasquini, D.T. Balogh, P.A. Antunes, C.J.L. Constantino, A.A.S. Curvelo, R.F. Aroca, O.N. Oliveira Jr, Langmuir 18, 6593–6596 (2002).CrossRefGoogle Scholar
  45. 45.
    D. Pasquini, D.T. Balogh, O.N. Oliveira Jr, A.A.S. Curvelo, Coll. Surface A: Physicochem. Eng. Aspec. 252, 193–200 (2005).CrossRefGoogle Scholar
  46. 46.
    O.B.G. Assis, D.C. Vieira, R. Bernardes-Filho, Braz. J. Chem. Engineer. 2000 17, 245–249 (2000).Google Scholar
  47. 47.
    C.R. Alves, M.G.R. Pimenta, R.H.S.F. Vieira, R.F. Furtado, M.I.F. Guedes, R.C.B. Silva, O.B.G. Assis, Elect. J. Biotechnol. 10, 160–165 (2007).Google Scholar
  48. 48.
    A. Navrotsky, J. Nanopart. Res. 2, 321–323 (2000).Google Scholar
  49. 49.
    D.W.O. Medeiros, Trindade C.G. Neto, D.E.S. Santos, F.J. Pavinatto, D.S. Santos, O.N. Oliveira Jr, A.E. Job, J.Á. Giacometti, T.N.C. Dantas, M.R. Pereira, J.L.C. Fonseca, J. Dispers. Sci. Technol. 26, 267–273 (2005).Google Scholar
  50. 50.
    P.J.G. Goulet, D.S. dos Santos Jr, R.A. Alvarez-Puebla, O.N. Oliveira Jr, R.F. Aroca, Langmuir 21, 5576–5581 (2005).CrossRefPubMedGoogle Scholar
  51. 51.
    Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536–1540 (2002).CrossRefPubMedADSGoogle Scholar
  52. 52.
    J. Stejskal, I. Sapurina, M. Trchova, E.N. Konyushenko, P. Holler, Polymer 47, 8253–8262 (2006).CrossRefGoogle Scholar
  53. 53.
    L.G. Paterno, F.J. Fonseca, G.B. Alcantara, M.A.G. Soler, P.C. Morais, J.P. Sinnecker, M.A. Novak, E.C.D. Lima, F.L. Leite, L.H.C. Mattoso, Thin Sol. Films 517, 1753–1758 (2009).CrossRefADSGoogle Scholar
  54. 54.
    M.G. Xavier, E.C. Venancio, E.C. Pereira, F.L. Leite, E.R. Leite, A.G. MacDiarmid, L.H.C. Mattoso, J. Nanosci. Nanotechnol. 8, 2169–2172 (2009).Google Scholar
  55. 55.
    P.A. Antunes, C.M. Santana, R.F. Aroca, O.N. Oliveira Jr, C.J.L. Constantino, Riul A. Jr, Synth. Met. 148, 21–24 (2005).Google Scholar
  56. 56.
    L. Qi, Z. Xu, X.Q. Jiang, X. Hu, Carbohyd. Res. 339, 2693–2700 (2004).Google Scholar
  57. 57.
    R.A.A. Muzzarelli, Cell. Mol. Biol. Life Sci. 53, 131–140 (1997).CrossRefGoogle Scholar
  58. 58.
    C.A. Constantine, S.V. Mello, A. Dupont, X. Cao, dos Santos D.S. Jr, O.N. Oliveira Jr, F.T. Strixino, E.C. Pereira, T. Cheng, J.J. Defrank, R.M. Leblanc, J. Am. Chem. Soc. 125, 1805–1809 (2003).Google Scholar
  59. 59.
    K. Kurita, Y. Koyama, A. Tanaguchi, J. Appl. Polym. Sci. 31, 1169–1176 (1986).Google Scholar
  60. 60.
    M.N.V.R. Kumar, React. Funct. Polym. 46, 1–27 (2000).CrossRefGoogle Scholar
  61. 61.
    C.E. Borato, F.L. Leite, L.H.C. Mattoso, R.C. Goy, S.P. Campana Filho, C.L. de Vasconcelos, C.G. da Trindade Neto, M.R. Pereira, J.L.C. Fonseca, O.N. Oliveira Jr, IEEE Trans. Dielec. Electrical. Ins. 13, 1101–1109 (2006).Google Scholar
  62. 62.
    J.R. Siqueira, L.H.S. Gasparatto, O.N. Oliveira Jr, V. Zucolotto, J. Phys. Chem. C 112, 9050–9055 (2008).Google Scholar
  63. 63.
    L.C. de Morais, R. Bernardes-Filho, O.B.G. Assis, World J. Microbiol. Biotechnol. 25, 123–129 (2009).CrossRefGoogle Scholar
  64. 64.
    A.C. Perinotto, L. Caseli, C.O. Hayasaka, A. Riul Jr, O.N. Oliveira Jr, V. Zucolotto, Thin Sol. Films 516, 9002–9005 (2008).CrossRefADSGoogle Scholar
  65. 65.
    E.D. Brugnollo, L.G. Paterno, F.L. Leite, F.J. Fonseca, C.J.L. Constantino, P.A. Antunes, L.H.C. Mattoso, Thin Sol. Films 516, 3274–3281 (2008).CrossRefADSGoogle Scholar
  66. 66.
    F.N. Crespilho, V. Zucolotto, J.R. Siqueira Jr, C.J.L. Constantino, F.C. Nart, O.N. Oliveira Jr, Environ. Sci. Technol. 39, 5385–5389 (2005).CrossRefPubMedGoogle Scholar
  67. 67.
    E.C. Venancio, N. Consolin Filho, C.J.L. Constantino, L. Martin-Neto, L.H.C. Mattoso, J. Braz. Chem. Soc. 16, 24–30 (2005).Google Scholar
  68. 68.
    F.L. Leite, A. Firmino, C.E. Borato, O.N. Oliveira Jr, L.H.C. Mattoso, W.T.L. da Silva, Synth. Met. (2008), in press. DOI: 10.1016/j.synthmet.2009.07.058Google Scholar
  69. 69.
    M. Ferreira, A. Riul Jr, K. Wohnrath, F.J. Fonseca, O.N. Oliveira Jr, L.H.C. Mattoso, Anal. Chem. 75, 953–955 (2003).CrossRefPubMedGoogle Scholar
  70. 70.
    E.-L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V.T. Moy, H.E. Gaub, Biosen. Bioelectron. 10, 895–901 (1995).CrossRefGoogle Scholar
  71. 71.
    A. Riul Jr, D.S. dos Santos Jr, K. Wohnrath, R. Di Tomazo, A.A.C.P.L.E. Carvalho, F.J. Fonseca, O.N. Oliveira Jr, D.M. Taylor, L.H.C. Mattoso, Langmuir 18, 239–245 (2002).Google Scholar
  72. 72.
    F.L. Leite, C.E. Borato, W.T.L. da Silva, P.S.P. Herrmann, O.N. Oliveira Jr, L.H.C. Mattoso, Microscopy Microanal. 13, 304–312 (2007).CrossRefADSGoogle Scholar
  73. 73.
    F.L. Leite, W.F. Alves, M. Oliveira Neto, I. Polikarpov, P.S.P. Herrmann, L.H.C. Mattoso, O.N. Oliveira Jr, Micron 39, 1119–1125 (2008).CrossRefPubMedGoogle Scholar
  74. 74.
    F.L. Leite, W.F. Alves, M. Mir, Y.P. Mascarenhas, P.S.P. Herrmann, L.H.C. Mattoso, O.N. Oliveira Jr, Appl. Phys. A 93, 537–542 (2008).CrossRefGoogle Scholar
  75. 75.
    C.E. Borato, F.L. Leite, O.N. Oliveira Jr, L.H.C. Mattoso, Sensor Lett. 4, 155–159 (2006).CrossRefGoogle Scholar
  76. 76.
    N. Consolin Filho, F.L. Leite, E.R. Carvalho, E.C. Venâncio, C.M.P. Vaz, L.H.C. Mattoso, J. Braz. Chem. Soc. 18, 577–584 (2007).Google Scholar
  77. 77.
    F.L. Leite, L.H.C. Mattoso, O.N. Oliveira, P.S.P. Herrmann, The Atomic Force Spectroscopy as a Tool to Investigate Surface Forces: Basic Principles and Applications, ed. by A. Méndez-Vilas and J. Diaz, Modern Research and Educational Topics in Microscopy (Formatex, 2007), 747–757.Google Scholar
  78. 78.
    P. Hinterdorfer, Y.F. Dufrêne, O.N. Oliveira Jr, Nat. Meth. 3, 347–355 (2006).CrossRefGoogle Scholar
  79. 79.
    L.Y. Mwaikambo, M.P. Ansell, J. Appl. Polym. Sci. 84, 2222–2234 (2002).Google Scholar
  80. 80.
    M.A. Martins, L.H.C. Mattoso, J. Appl. Polym. Sci. 91, 670–677 (2004).Google Scholar
  81. 81.
    K. Joseph, S. Thomas, C. Pavithran, Polymer 37, 5139–5149 (1996).CrossRefGoogle Scholar
  82. 82.
    F.L. Leite, P.S.P. Herrmann, A.L. Da Róz, F.C. Ferreira, A.A.S. Curvelo, L.H.C. Mattoso, J. Nanosci. Nanotechnol. 6, 2354–2361 (2006).Google Scholar
  83. 83.
    M.A. Mosiewicki, W.F. Schroeder, F.L. Leite, P.S.P. Herrmann, A.A.S. Curvelo, M.I. Aranguren, J. Borrajo, J. Mater. Sci. 41, 6154–6158 (2006).Google Scholar
  84. 84.
    F.L. Leite, E.C. Ziemath, P.S.P. Herrmann, Scanning 30, 271 (2008).Google Scholar
  85. 85.
    N.E. Marcovich, M.L. Auad, N.E. Bellesi, S.R. Nutt, M.I. Aranguren J. Mater. Res. 21, 870–881 (2006).Google Scholar
  86. 86.
    E.S. Medeiros, L.H.C. Mattoso, R. Bernardes-Filho, D.F. Wood, W.J. Orts, Coll. Polym. Sci. 286, 1265–1272 (2008).CrossRefGoogle Scholar
  87. 87.
    N.L.G. Rodriguez, W. Thielemans, A. Dufresne, Cellulose, 13, 261–270 (2006).CrossRefGoogle Scholar
  88. 88.
    C.M.P. Vaz, P.S.P. Herrmann, S. Crestana, Powd. Technol. 126, 51–58 (2002).CrossRefGoogle Scholar
  89. 89.
    F.L. Leite, Riul A. Jr, P.S.P. Herrmann, J. Adhes. Sci. Technol. 17, 2141 (2003).Google Scholar
  90. 90.
    F.L. Leite, M. Mir, A.M. Rossi, E.L. Moreira, Y.P. Mascarenhas, P.S.P. Herrmann, Scanning 30, 265 (2008).Google Scholar
  91. 91.
    F.L. Leite, P.S.P. Herrmann, Y.P. Mascarenhas, M.E. Alves, Scanning 30, 275–276 (2008).Google Scholar
  92. 92.
    R.M. Nyffenegger, R.M. Penner, Chem. Rev. 97, 1195–1230 (1997).CrossRefPubMedGoogle Scholar
  93. 93.
    R.F.M. Lobo, M.A. Pereira-da-Silva, M. Raposo, R.M. Faria, O.N. Oliveira Jr, Nanotechnology 10, 389–393 (1999).CrossRefADSGoogle Scholar
  94. 94.
    Y. Martin, H.K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987).CrossRefADSGoogle Scholar
  95. 95.
    J.J. Saenz, N. Garcia, P. Grutter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H.R. Hidber, H.-J. Guntherodt, J. Appl. Phys. 62, 4293–4295 (1987).Google Scholar
  96. 96.
    P.S.P. Herrmann, L.A. Colnago, L.H.C. Mattoso, P.E. Cruvinel, J. Frommer, Nanotechnology and Nanosciences, Perspectives and Potential Applications in Agricultural Research (chapter 3), ed. by P.E. Cruvinel, S. Mascarenhas, Advanced Studies in Agricultural Instrumentation (Rima Editora, Brazil, 2002).Google Scholar
  97. 97.
    A. Hendrych, R. Kubinek, A.V. Zhukov, The Magnetic Force Microscopy and its Capability for Nanomagnetic Studies-The Short Compendium, ed. by A. Méndez, J. Diaz, Modern Research and Educational Topics in Microscopy (©Formatex, 2007), 805–811.Google Scholar
  98. 98.
    R.B. Proksch, B.M. Moskowitz, E.D. Dahlberg, T. Schaeffer, Appl. Phys. Lett. 66, 2582–2584 (1995).CrossRefADSGoogle Scholar
  99. 99.
    Y. Amemiya, T. Tanaka, B. Yozaand, T. Matsunaga, Biotechnology 120, 308–314 (2005).CrossRefGoogle Scholar
  100. 100.
    M. Gross, Travel to Nanoworld, Miniature, Machinery in Nature and Technology (Plenum Trade, New York, 1999), 1–254.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fabio Lima Leite
    • 1
    • 2
  • Alexandra Manzoli
    • 3
  • Paulo Sérgio Paula de HerrmannJr
    • 4
  • Osvaldo Novais OliveiraJr
    • 5
  • Luiz Henrique Capparelli Mattoso
    • 6
  1. 1.Embrapa Agricultural InstrumentionSao CarlosBrazil
  2. 2.Federal University of Sao Carlos (UFSCar)SorocabaBrazil
  3. 3.Alan G. MacDiarmid Institute for Innovation and Business and National Nanotechnology Laboratory for Agribusiness (LNNA) Embrapa Agricultural InstrumentionSao CarlosBrazil
  4. 4.Embrapa Instrumentação Agropecuária Laboratório Nacional de Nanotecnologia para o AgronegócioSão CarlosBrasil
  5. 5.Institute of Physics of Sao Carlos (IFSC) University of Sao PauloSao CarlosBrazil
  6. 6.Chefe de P&D, Embrapa Instrumentação Agropecuária Laboratório Nacional de Nanotecnologia para o AgronegócioSão CarlosBrasil

Personalised recommendations