Differential GPS: An Enabling Technology for Formation Flying Satellites

  • Simone D’Amico
  • Oliver Montenbruck
Conference paper


The differential processing of carrier phase measurements from Global Navigation Satellite Systems (GNSS) is a well know technique for relative positioning in terrestrial and aeronautical applications. Over the past decade intensive research has been conducted to demonstrate its suitability for high-precision relative navigation of spacecraft in low Earth orbit (LEO). This chapter describes the fundamental concepts of differential GNSS and its application to spacecraft formation flying. A review of past achievements is given and the practical aspects of differential GPS are discussed for real-time and offline navigation in the upcoming PRISMA and TerraSAR-X missions.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Carrier Phase Global Position System Receiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The TanDEM-X project is partly funded by the German Federal Ministry for Economics and Technology (Förderkennzeichen 50 EE 0601).


  1. 1.
    P. Misra, P. Enge. Global Positioning System (GPS): Signals, Measurements and Performance, USA, Ganga-Jamuna Press, 2nd edition, 2006.Google Scholar
  2. 2.
    B. Parkinson, J. Spilker, P. Axelrad, P. Enge (eds.), Global Positioning System: Theory and Applications, Washington, DC, AIAA, 1996.Google Scholar
  3. 3.
    J. Leitner, F. Bauer, D. Folta, R. Carpenter, M. Moreau, J. How. Formation Flight in Space. GPS World, 13(2), 22–31, Feb. 2002.Google Scholar
  4. 4.
    O. Montenbruck, M. Markgraf, M. Garcia, A. Helm. GPS for Microsatellites – Status and Perspectives. 6th IAA Symposium on Small Satellites for Earth Observation, April 23–26, 2007, Berlin, Germany, 2007.Google Scholar
  5. 5.
    Ph. Ferguson, F. Busse, B. Engberg, J. How, M. Tillerson, N. Pohlman, A. Richards, R. Twiggs. Formation Flying Experiments on the Orion-Emerald Mission; AIAA-2001-4688, AIAA Space 2001, Albuquerque, NM, Aug. 28–30, 2001.Google Scholar
  6. 6.
    G. Holt, T. Campbell, E.G. Lightsey. GPS, Distributed Communications, and Thruster Experiments on the University of Texas FASTRAC Mission, AMSAT 22nd Annual Space Symposium, Washington, DC, Conference and Exposition, Oct. 2004.Google Scholar
  7. 7.
    D. Maessen, E. Gill, J. Guo, E. Laan, S. Moon, G.T. Zheng. Mission Design of the Dutch-Chinese FAST Micro-Satellite Mission. 7th IAA Symposium on Small Satellites for Earth Observation, May 4–8, 2009, Berlin, Germany, 2008.Google Scholar
  8. 8.
    I. Kawano, M. Mokuno, M. Kasai, T. Suzuki. First autonomous rendezvous using relative GPS navigation by ETS-VII. In Proceedings of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 393–400. The Institute of Navigation, Nashville, TN, 1999.Google Scholar
  9. 9.
    T. Ebinuma. Precision Spacecraft Rendezvous Using Global Positioning System: An Integrated Hardware Approach. PhD Thesis, University of Texas, Austin, TX, 2001.Google Scholar
  10. 10.
    F.D. Busse. Precise Formation-State Estimation in Low Earth Orbit Using Carrier Differential GPS, PhD thesis, Department of Aeronautics and Astronautics, Stanford, CA, Stanford University, March 2003.Google Scholar
  11. 11.
    S. Leung, O. Montenbruck. Real-Time Navigation of Formation-Flying Spacecraft using Global Positioning System Measurements. Journal of Guidance, Control and Dynamics, 28/2, 226–235, 2005.CrossRefGoogle Scholar
  12. 12.
    M.L. Psiaki, S. Mohiuddin. Relative Navigation of High-Altitude Spacecraft Using Dual-Frequency Civilian CDGPS. Proceedings of the ION-GPS-2005, Long Beach, CA, September 13–16 2005.Google Scholar
  13. 13.
    W.A. Bamford, G.W. Heckler, G.N. Holt, M.C. Moreau. A GPS Receiver for Lunar Missions, Proceedings of the 2008 National Technical Meeting of the ION, San Diego, CA, pp. 268–278, January 28–30, 2008.Google Scholar
  14. 14.
    J.T. Wu, S.C. Wu, G.A. Hajj, W.I. Bertiger, S.M. Lichten. Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetica, 18, 91–98, 1993.Google Scholar
  15. 15.
    P.J.G. Teunissen. The least squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity rounding and bootstrapping. Journal of Geodesy, 72, 65–82, 1995.CrossRefGoogle Scholar
  16. 16.
    R. Kroes, O. Montenbruck, W. Bertiger, P. Visser. Precise GRACE baseline determination using GPS. GPS Solutions, 9, 21–31, 2005. DOI: 10.1007/s10291-004-0123-5.CrossRefGoogle Scholar
  17. 17.
    A. Jäggi, U. Hugentobler, H. Bock, G. Beutler. Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data. Advances in Space Research, 39(10), 1612–1619, 2006.CrossRefGoogle Scholar
  18. 18.
    S.-Ch. Wu, Y.E. Bar-Sever. Real-time sub-cm differential orbit determination of two Low-Earth Orbiters with GPS bias fixing; ION GNSS 2006, September 26–29, Fort Worth, Texas, 2006.Google Scholar
  19. 19.
    S. Persson, P. Bodin, E. Gill, J. Harr, J. Jorgensen. PRISMA–an autonomous formation flying mission. ESA Small Satellite Systems and Services Symposium (4S), Sardinia, Italy, September 2006.Google Scholar
  20. 20.
    S. D’Amico, E. Gill, M. Garcia, O. Montenbruck. GPS-Based Real-Time Navigation for the PRISMA Formation Flying Mission, NAVITEC’2006, Noordwijk, 11–13 December 2006.Google Scholar
  21. 21.
    G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, M. Zink. TanDEM-X: a satellite formation for high resolution SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3317–3341, 2007. DOI: 10.1109/TGRS.2007.900693.CrossRefGoogle Scholar
  22. 22.
    O. Montenbruck, T. van Helleputte, R. Kroes, E. Gill. Reduced dynamic orbit determination using GPS code and carrier measurements. Aerospace Science and Technology, 9/3, 261–271, 2005. DOI: 10.1016/j.ast.2005.01.003.CrossRefGoogle Scholar
  23. 23.
    Y. Yoon, M. Eineder, N. Yague-Martinez, O. Montenbruck. TerraSAR-X precise trajectory estimation and quality assessment. IEEE Transactions on Geoscience and Remote Sensing, 47/2, 2009. DOI: 10.1109/TGRS.2008.2006983.Google Scholar
  24. 24.
    O. Montenbruck, M. Garcia-Fernandez, Y. Yoon, S. Schön, A. Jäggi. Antenna phase center calibration for precise positioning of LEO satellites. GPS Solutions, 13/1, 23–34, 2009. DOI: 10.1007/s10291-008-0094-z.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.DLR, German Space Operations CenterMunichGermany

Personalised recommendations