Polynomial Precise Interval Analysis Revisited

  • Thomas Gawlitza
  • Jérôme Leroux
  • Jan Reineke
  • Helmut Seidl
  • Grégoire Sutre
  • Reinhard Wilhelm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5760)

Abstract

We consider a class of arithmetic equations over the complete lattice of integers (extended with -∞ and ∞) and provide a polynomial time algorithm for computing least solutions. For systems of equations with addition and least upper bounds, this algorithm is a smooth generalization of the Bellman-Ford algorithm for computing the single source shortest path in presence of positive and negative edge weights. The method then is extended to deal with more general forms of operations as well as minima with constants. For the latter, a controlled widening is applied at loops where unbounded increase occurs. We apply this algorithm to construct a cubic time algorithm for the class of interval equations using least upper bounds, addition, intersection with constant intervals as well as multiplication.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Second Int. Symp. on Programming, Dunod, Paris, France, pp. 106–130 (1976)Google Scholar
  2. 2.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTRÉE Analyser. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Cousot, P., Cousot, R.: Comparison of the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. In: JTASPEFL 1991, Bordeaux, vol. 74, pp. 107–110. BIGRE (1991)Google Scholar
  4. 4.
    Miné, A.: Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Miné, A.: Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Su, Z., Wagner, D.: A Class of Polynomially Solvable Range Constraints for Interval Analysis Without Widenings. Theor. Comput. Sci. (TCS) 345(1), 122–138 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Knuth, D.E.: A Generalization of Dijkstra’s algorithm. Information Processing Letters (IPL) 6(1), 1–5 (1977)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy Iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Leroux, J., Sutre, G.: Accelerated Data-Flow Analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 184–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Seidl, H.: Least and Greatest Solutions of Equations over \(\cal N\). Nordic Journal of Computing (NJC) 3(1), 41–62 (1996)MathSciNetGoogle Scholar
  11. 11.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Gawlitza
    • 1
  • Jérôme Leroux
    • 2
  • Jan Reineke
    • 3
  • Helmut Seidl
    • 1
  • Grégoire Sutre
    • 2
  • Reinhard Wilhelm
    • 3
  1. 1.Institut für Informatik, I2TU MünchenMünchenGermany
  2. 2.LaBRIUniversité de Bordeaux, CNRSTalence CedexFrance
  3. 3.Universität des SaarlandesGermany

Personalised recommendations