Efficient Algorithms pp 199-218

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5760) | Cite as

Integer Linear Programming in Computational Biology

  • Ernst Althaus
  • Gunnar W. Klau
  • Oliver Kohlbacher
  • Hans-Peter Lenhof
  • Knut Reinert

Abstract

Computational molecular biology (bioinformatics) is a young research field that is rich in NP-hard optimization problems. The problem instances encountered are often huge and comprise thousands of variables. Since their introduction into the field of bioinformatics in 1997, integer linear programming (ILP) techniques have been successfully applied to many optimization problems. These approaches have added much momentum to development and progress in related areas. In particular, ILP-based approaches have become a standard optimization technique in bioinformatics. In this review, we present applications of ILP-based techniques developed by members and former members of Kurt Mehlhorn’s group. These techniques were introduced to bioinformatics in a series of papers and popularized by demonstration of their effectiveness and potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes using unique probes. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1994), pp. 489–500 (1994)Google Scholar
  2. 2.
    Reinert, K., Lenhof, H., Mutzel, P., Mehlhorn, K., Kececioglu, J.: A branch-and-cut algorithm for multiple sequence alignment. In: Proceedings of the First Annual International Conference on Computational Molecular Biology (RECOMB 1997), pp. 241–249 (1997)Google Scholar
  3. 3.
    Christof, T., Jünger, M., Kececioglu, J., Mutzel, P., Reinelt, G.: A branch-and-cut approach to physical mapping with end-probes. In: Proceedings of the First Annual International Conference on Computational Molecular Biology (RECOMB 1997), pp. 84–92 (1997)Google Scholar
  4. 4.
    Lenhof, H.P., Reinert, K., Vingron, M.: A polyhedral approach to RNA sequence structure alignment. In: Proceedings of the Second Annual International Conference on Computational Molecular Biology (RECOMB 1998), pp. 153–162 (1998)Google Scholar
  5. 5.
    Althaus, E., Kohlbacher, O., Lenhof, H., Müller, P.: A combinatorial approach to protein docking with flexible side-chains. In: Proceedings of the Second Annual International Conference on Computational Molecular Biology (RECOMB 2000), pp. 15–24 (2000)Google Scholar
  6. 6.
    Klau, G., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust non-unique probe selection using integer linear programming. Bioinformatics 20, i186–i193 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Dittrich, M., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223 (2008)CrossRefGoogle Scholar
  8. 8.
    Lancia, G.: Mathematical programming in computational biology: an annotated bibliography. Algorithms 1(2), 100–129 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kececioglu, J.: The maximum weight trace problem in multiple sequence alignment. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 106–119. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Lenhof, H.P., Morgenstern, B., Reinert, K.: An exact solution for the segment-to-segment multiple sequence alignment problem. Bioinformatics 15(3), 203–210 (1999)CrossRefGoogle Scholar
  11. 11.
    Althaus, E., Caprara, A., Lenhof, H.P., Reinert, K.: Multiple sequence alignment with arbitrary gap costs: Computing an optimal solution using polyhedral combinatorics. In: Proceedings of the 1st European Conference on Computational Biology (ECCB 2002), pp. 4–16 (2002)Google Scholar
  12. 12.
    Althaus, E., Caprara, A., Lenhof, H.P., Reinert, K.: A branch-and-cut algorithm for multiple sequence alignment. Mathematical Programming 105, 387–425 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Althaus, E., Canzar, S.: A Lagrangian relaxation approach for the multiple sequence alignment problem. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 267–278. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Althaus, E., Canzar, S.: A Lagrangian relaxation approach for the multiple sequence alignment problem. J. Combinat. Opt. 16(2), 127–154 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fischetti, M., Lancia, G., Serafini, P.: Exact algorithms for minimum routing cost trees. Networks 39, 161–173 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed error bounds. Bulletin of Mathematical Biology 55, 141–154 (1993)CrossRefMATHGoogle Scholar
  17. 17.
    Kececioglu, J., Kim, E.: Simple and fast inverse alignment. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 441–455. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Mattick, J.S.: The functional genomics of noncoding RNA. Science 309(5740), 1527–1528 (2005)CrossRefGoogle Scholar
  19. 19.
    Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: FOCS, pp. 512–522 (1999)Google Scholar
  20. 20.
    Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1(4), 337–348 (1994)CrossRefGoogle Scholar
  21. 21.
    Lancia, G., Carr, R., Walenz, B., Istrail, S.: 101 optimal PDB structure alignments: a branch-and-cut algorithm for the maximum contact map overlap problem. In: Proc. of the Fifth Annual International Conference on Computational Biology, pp. 193–202. ACM Press, New York (2001)Google Scholar
  22. 22.
    Caprara, A., Lancia, G.: Structural Alignment of Large-Size Proteins via Lagrangian Relaxation. In: Proc. of RECOMB 2002, pp. 100–108. ACM Press, New York (2002)Google Scholar
  23. 23.
    Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. Informs J. on Computing 11(2), 125–137 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Carraresi, P., Malucelli, F.: A reformulation scheme and new lower bounds for the quadratic assignment problem. In: Quadratic Assignment and Related Topics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 147–160. AMS Bookstore (1994)Google Scholar
  25. 25.
    Bauer, M., Klau, G.W.: Structural Alignment of Two RNA Sequences with Lagrangian Relaxation. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 113–123. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Bauer, M., Klau, G.W., Reinert, K.: Multiple structural RNA alignment with Lagrangian relaxation. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 303–314. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Bauer, M., Klau, G.W., Reinert, K.: An exact mathematical programming approach to multiple RNA sequence-structure alignment. Algorithmic Operations Research (2008); Special Issue on Biology, Medicine, and Health CareGoogle Scholar
  28. 28.
    Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization. BMC Bioinformatics 8(1), 271 (2007)CrossRefGoogle Scholar
  29. 29.
    Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205–217 (2000)CrossRefGoogle Scholar
  30. 30.
    Althaus, E., Kohlbacher, O., Lenhof, H.P., Müller, P.: A combinatorial approach to protein docking with flexible side-chains. J. Comput. Biol. 9(4), 597–612 (2002)CrossRefGoogle Scholar
  31. 31.
    Eriksson, O., Zhou, Y., Elofsson, A.: Side-chain positioning as an integer programming problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 128–141. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Chazelle, B., Kingsford, C., Singh, M.: A semidefinite programming approach to side chain positioning with new rounding strategies. Informs J. Comput. 16, 380–392 (2004)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kingsford, C., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 21, 1028–1039 (2005)CrossRefGoogle Scholar
  34. 34.
    Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear programming. J. Bioinformatics Comput. Biol. 1(1), 95–117 (2003)CrossRefGoogle Scholar
  35. 35.
    Xu, J., Li, M.: Assessment of RAPTOR’s linear programming approach in CAFASP3. Proteins 53(suppl. 6), 579–584 (2003)CrossRefGoogle Scholar
  36. 36.
    Xu, J., Li, M., Xu, Y.: Protein threading by linear programming: theoretical analysis and computational results. J. Combinat. Opt. 8(4), 403–418 (2004)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Andonov, R., Balev, S., Yanev, N.: Protein threading: From mathematical models to parallel implementations. Informs J. Comput. 16(4), 393–405 (2004)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Veber, P., Yanev, N., Andonov, R., Poirriez, V.: Optimal protein threading by cost-splitting. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 365–375. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  39. 39.
    Zhang, Z., Post, C.B., Smith, D.L.: Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry 35, 779–791 (1996)CrossRefGoogle Scholar
  40. 40.
    Althaus, E., Canzar, S., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-Baese, A., Zhang, H.: Computing H/D-exchange speeds of single residues from data of peptic fragments. In: Proceedings of the 23rd Annual ACM Symposium on Applied Computing, Fortaleza, Ceará, Brazil (2008)Google Scholar
  41. 41.
    Althaus, E., Canzar, S., Ehrler, C., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-Bäse, A., Tipton, J., Zhang, H.: Discrete fitting of hydrogen-deuterium-exchange-data of overlapping fragments. In: The 2009 International Conference on Bioinformatics & Computational Biology (in press, 2009) (accepted for publication)Google Scholar
  42. 42.
    Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust non-unique probe selection using integer linear programming. In: Proceedings of the Twelfth International Conference on Intelligent Systems for Molecular Biology (ISMB 2004), pp. 186–193 (2004)Google Scholar
  43. 43.
    Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Integer linear programming approaches for non-unique probe selection. Discrete Applied Mathematics 155, 840–856 (2007)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1), S233–S240 (2002)CrossRefGoogle Scholar
  45. 45.
    Klau, G.W.: A new graph-based method for pairwise global network alignment. BMC Bioinformatics 10(suppl. 1), S59 (2009)CrossRefGoogle Scholar
  46. 46.
    Toussaint, N.C., Dönnes, P., Kohlbacher, O.: A mathematical framework for the selection of an optimal set of peptides for epitope-based vaccines. PLoS Comput. Biol. 4(12), e1000246 (2008)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Toussaint, N.C., Kohlbacher, O.: OptiTope – A web server for the selection of an optimal set of peptides for epitope-based vaccines. Nucl. Acids Res. (in press, 2009)Google Scholar
  48. 48.
    Knuth, D.E.: Donald Knuth – Computer Literacy Bookshops Interview (1993), http://tex.loria.fr/historique/interviews/knuth-clb1993.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ernst Althaus
    • 1
  • Gunnar W. Klau
    • 2
  • Oliver Kohlbacher
    • 3
  • Hans-Peter Lenhof
    • 4
  • Knut Reinert
    • 5
  1. 1.Department of Computer ScienceJohannes-Gutenberg-Universität MainzGermany
  2. 2.Life Sciences GroupCentrum Wiskunde & Informatica (CWI)Amsterdam
  3. 3.Center for Bioinformatics TübingenEberhard-Karls-Universität TübingenGermany
  4. 4.Center for Bioinformatics SaarSaarland UniversityGermany
  5. 5.Institute for Computer ScienceFreie Universität BerlinGermany

Personalised recommendations