Advertisement

Tiles for Reo

  • Farhad Arbab
  • Roberto Bruni
  • Dave Clarke
  • Ivan Lanese
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5486)

Abstract

Reo is an exogenous coordination model for software components. The informal semantics of Reo has been matched by several proposals of formalization, exploiting co-algebraic techniques, constraint-automata, and coloring tables. We aim to show that the Tile Model offers a flexible and adequate semantic setting for Reo, such that: (i) it is able to capture context-aware behavior; (ii) it is equipped with a natural notion of behavioral equivalence which is compositional; (iii) it offers a uniform setting for representing not only the ordinary execution of Reo systems but also dynamic reconfiguration strategies.

Keywords

Data Item Sink Node Boundary Node Monoidal Category Tile System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Reo: A channel-based coordination model for component composition. Math. Struct. in Comput. Sci. 14(3), 1–38 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theoret. Comput. Sci. 366(1-2), 98–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and context dependency. Sci. Comput. Program 66(3), 205–225 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    CWI. Reo home page, http://reo.project.cwi.nl
  8. 8.
    CWI. A repository of Reo connectors, http://homepages.cwi.nl/~proenca/webreo/
  9. 9.
    Gadducci, F., Montanar, U.: The tile model. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Koehler, C., Arbab, F., de Vink, E.: Reconfiguring Distributed Reo Connectors. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 221–235. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors triggered by dataflow. In: Ermel, C., Heckel, R., de Lara, J. (eds.) Proceedings of GT-VMT 2008. Elect. Communic. of the European Association of Software Science and Technology, vol. 10, pp. 1–13. EASST (2008)Google Scholar
  12. 12.
    Koehler, C., Lazovik, A., Arbab, F.: Connector rewriting with high-level replacement systems. In: Canal, C., Poizat, P., Viroli, M. (eds.) Proceedings of FOCLASA 2007. Elect. Notes in Th. Comput. Sci. Elsevier Science, Amsterdam (2007)Google Scholar
  13. 13.
    Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 526–539. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  14. 14.
    MacLane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)zbMATHGoogle Scholar
  15. 15.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordinating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Farhad Arbab
    • 1
  • Roberto Bruni
    • 2
  • Dave Clarke
    • 3
  • Ivan Lanese
    • 4
  • Ugo Montanari
    • 2
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly
  3. 3.Department of Computer ScienceKatholieke Universiteit LeuvenBelgium
  4. 4.Dipartimento di Scienze dell’InformazioneUniversità di BolognaItaly

Personalised recommendations