Advertisement

Heterogeneous Logical Environments for Distributed Specifications

  • Till Mossakowski
  • Andrzej Tarlecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5486)

Abstract

We use the theory of institutions to capture the concept of a heterogeneous logical environment as a number of institutions linked by institution morphisms and comorphisms. We discuss heterogeneous specifications built in such environments, with inter-institutional specification morphisms based on both institution morphisms and comorphisms. We distinguish three kinds of heterogeneity: (1) specifications in logical environments with universal logic (2) heterogeneous specifications focused at a particular logic, and (3) heterogeneous specifications distributed over a number of logics.

Keywords

Model Functor Logical System Proof Obligation Signature Category Relational Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AF96]
    Arrais, M., Fiadeiro, J.-L.: Unifying theories in different institutions. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 81–101. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. [BG80]
    Burstall, R.M., Goguen, J.A.: The semantics of CLEAR, a specification language. In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  3. [Bor94]
    Borceux, F.: Handbook of Categorical Algebra I. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  4. [BRJ98]
    Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addison-Wesley, Reading (1998)Google Scholar
  5. [CBEO99]
    Cornelius, F., Baldamus, M., Ehrig, H., Orejas, F.: Abstract and behaviour module specifications. Mathematical Structures in Computer Science 9(1), 21–62 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CKTW08]
    Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. [Cla93]
    Classen, I.: Compositionality of application oriented structuring mechanisms for algebraic specification languages with initial algebra semantics. Phd thesis, Technische Universität Berlin (1993)Google Scholar
  8. [CM08]
    Codescu, M., Mossakowski, T.: Heterogeneous colimits. In: Boulanger, F., Gaston, C., Schobbens, P.-Y. (eds.) MoVaH 2008 Workshop on Modeling, Validation and Heterogeneity. IEEE press, Los Alamitos (2008)Google Scholar
  9. [Cod]
    Codescu, M.: Generalized theoroidal institution comorphisms. This volumeGoogle Scholar
  10. [DGS93]
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Logical Environments, pp. 83–130. Cambridge Univ. Press, Cambridge (1993)Google Scholar
  11. [Dia98]
    Diaconescu, R.: Extra theory morphisms for institutions: Logical semantics for multi-paradigm languages. J. Applied Categorical Structures 6, 427–453 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Dia02]
    Diaconescu, R.: Grothendieck institutions. J. Applied Categorical Structures 10, 383–402 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Dia08]
    Diaconescu, R.: Institution-independent model theory. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  14. [DM03]
    Durán, F., Meseguer, J.: Structured theories and institutions. Theor. Comput. Sci. 309(1-3), 357–380 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [EBCO92]
    Ehrig, H., Baldamus, M., Cornelius, F., Orejas, F.: Theory of algebraic module specification including behavioral semantics and constraints. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.) Algebraic Methodology and Software Technology AMAST 1991, Proc. 2nd Intl. Conf., Iowa City, 1991, Workshops in Computing, pp. 145–172. Springer, Heidelberg (1992)Google Scholar
  16. [EBO93]
    Ehrig, H., Baldamus, M., Orejas, F.: New concepts of amalgamation and extension for a general theory of specifications. In: Bidoit, M., Choppy, C. (eds.) Abstract Data Types 1991 and COMPASS 1991. LNCS, vol. 655, pp. 199–221. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. [GB92]
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [GR02]
    Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Compututing 13(3-5), 274–307 (2002)CrossRefzbMATHGoogle Scholar
  19. [HHP93]
    Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. Journal of the ACM 40(1), 143–184 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [MDT09]
    Mossakowski, T., Diaconescu, R., Tarlecki, A.: What is a logic translation? In: Beziau, J.-Y. (ed.) Logica Universalis, Birkhäuser, Basel (to appear, 2009)Google Scholar
  21. [Mes89]
    Meseguer, J.: General logics. In: Logic Colloquium 1987, pp. 275–329. North Holland, Amsterdam (1989)Google Scholar
  22. [MML07]
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. [MOM02]
    Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor. Comput. Sci. 285(2), 121–154 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Mos96]
    Mossakowski, T.: Different types of arrow between logical frameworks. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 158–169. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  25. [Mos02a]
    Mossakowski, T.: Comorphism-based Grothendieck logics. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. [Mos02b]
    Mossakowski, T.: Heterogeneous development graphs and heterogeneous borrowing. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 326–341. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. [Mos03]
    Mossakowski, T.: Foundations of heterogeneous specification. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 359–375. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. [Mos05]
    Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilitation thesis, Universität Bremen (2005)Google Scholar
  29. [MW98]
    Martini, A., Wolter, U.: A single perspective on arrows between institutions. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 486–501. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. [NPW02]
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  31. [PF06]
    López Pombo, C., Frias, M.F.: Fork algebras as a sufficiently rich universal institution. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 235–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. [ST88a]
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Computation 76, 165–210 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [ST88b]
    Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic specifications: Implementations revisited. Acta Informatica 25, 233–281 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [ST97]
    Sannella, D., Tarlecki, A.: Essential concepts of algebraic specification and program development. Formal Aspects of Computing 9, 229–269 (1997)CrossRefzbMATHGoogle Scholar
  35. [Tar87]
    Tarlecki, A.: Institution representation. Unpublished note, Dept. of Computer Science, University of Edinburgh (1987)Google Scholar
  36. [Tar96]
    Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  37. [Tar00]
    Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Rijke, M. (eds.) Frontiers of Combining Systems 2. Studies in Logic and Computation, pp. 337–360. Research Studies Press (2000)Google Scholar
  38. [Tar03]
    Tarlecki, A.: Abstract specification theory: An overview. In: Broy, M., Pizka, M. (eds.) Models, Algebras, and Logics of Engineering Software. NATO Science Series — Computer and System Sciences, vol. 191, pp. 43–79. IOS Press, Amsterdam (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Till Mossakowski
    • 1
    • 2
  • Andrzej Tarlecki
    • 3
    • 4
  1. 1.Institute for Computer ScienceAlbert-Ludwigs-Universität FreiburgGermany
  2. 2.Safe and Secure Cognitive SystemsDFKI GmbHBremenGermany
  3. 3.Institute of InformaticsUniversity of WarsawPoland
  4. 4.Institute of Computer SciencePolish Academy of SciencesPoland

Personalised recommendations