Reconfiguring Distributed Reo Connectors

  • Christian Koehler
  • Farhad Arbab
  • Erik de Vink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5486)


The coordination language Reo defines circuit-like connectors to steer the collaboration of independent components. In this paper, we present a framework for the modeling of distributed, self-reconfigurable connectors based on algebraic graph transformations. Reconfiguring a connector that is composed with others, may involve a change of shared interfaces and may therefore require a reconfiguration of the surrounding connectors as well. We present a method of synchronized local reconfigurations in this setting and discuss a bottom-up strategy for coordinating synchronized reconfigurations in a connector network. We exploit the double-pushout approach for the modeling of reconfigurations, and propose an adaptation of the concept of amalgamation for synchronizing reconfigurations. We use a nondeterministic scheduler as our running example.


Data Item Sink Node Graph Transformation Network Graph Type Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathematical Structures in Computer Science 14, 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F.: Abstract Behavior Types: A Foundation Model for Components and Their Composition. Science of Computer Programming 55, 3–52 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Taentzer, G.: Distributed Graphs and Graph Transformation. Applied Categorical Structures 7, 431–462 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ehrig, H., Orejas, F., Prange, U.: Categorical Foundations of Distributed Graph Transformation. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 215–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of Graph Transformations: A Synchronization Mechanism. Journal of Computer and System Sciences 34, 377–408 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Approaches to Graph Transformation I: Basic Concepts and Double Pushout Approach. In: Handbook of Graph Grammars and Computing by Graph Transformation, pp. 163–245. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  7. 7.
    Taentzer, G., Beyer, M.: Amalgamated Graph Transformations and Their Use for Specifying AGG. In: Ehrig, H., Schneider, H.-J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 380–394. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. In: EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional Semantics for Open Petri Nets based on Deterministic Processes. Mathematical Structures in Computer Science 15, 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bruni, R., Lafuente, A.L., Montanari, U., Tuosto, E.: Style-based Architectural Reconfigurations. Bulletin of the EATCS 94, 180–181 (2008)zbMATHGoogle Scholar
  11. 11.
    Engels, G., Heckel, R.: Graph Transformation as a Conceptual and Formal Framework for System Modeling and Model Evolution. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 127–150. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Yellin, D., Strom, R.: Protocol specifications and component adaptors. ACM Transactions on Programming Languages and Systems 19, 292–333 (1990)CrossRefGoogle Scholar
  13. 13.
    Canal, C., Murillo, J., Poizat, P.: Software adaptation. L’Object 12, 9–31 (2006)Google Scholar
  14. 14.
    Brogi, A., Cámera, J., Canal, C., Cubo, J., Pimentel, E.: Dynamic contextual adaptation. Electronics Notes in Theoretical Computer Science 175, 81–95 (2007)CrossRefGoogle Scholar
  15. 15.
    Cubo, J., Salaün, G., Cámara, J., Canal, C., Pimentel, E.: Context-based adaptation of component behavioural interfaces. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 305–323. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Gottschalk, F., Aalst, W.v.d., Jansen-Vullers, M., La Rosa, M.: Configurable workflow models. Journal of Cooperative Information Systems 17, 177–221 (2008)CrossRefGoogle Scholar
  17. 17.
    Clarke, D., Costa, D., Arbab, F.: Connector Colouring I: Synchronisation and Context Dependency. Science of Computer Programming 66, 205–225 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo (extended abstract). In: Corradini, A., Gadduci, F. (eds.) WADT 2008, preliminary proceedings, Technical Report TR–08–15, Dipartemento di Informatica, Università di Pisa, pp. 21–24 (2008)Google Scholar
  20. 20.
    Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.J., Proenca, J.: Modeling, Testing and Executing Reo Connectors with the Eclipse Coordination Tools. In: Canal, C., Pasareanu, C. (eds.) Proc. FACS 2008 (to appear)Google Scholar
  21. 21.
    Odersky, M.: The Scala experiment: Can we provide better language support for component systems? In: Morrisett, J., Peyton Jones, S. (eds.) Proc. POPL, pp. 166–167. ACM, New York (2006)Google Scholar
  22. 22.
    de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed Graph Transformation with Node Type Inheritance. Theoretical Computer Science 376, 139–163 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-based models with type inheritance. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 64–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Koehler
    • 1
  • Farhad Arbab
    • 1
  • Erik de Vink
    • 2
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Technische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations