Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids

Conference paper


We give an overview of multilevel methods, such as V-cycle multigrid and BPX preconditioner, for solving various partial differential equations (including H(grad), H(curl) and H(div) systems) on quasi-uniform meshes and extend them to graded meshes and completely unstructured grids. We first discuss the classical multigrid theory on the basis of the method of subspace correction of Xu and a key identity of Xu and Zikatanov. We next extend the classical multilevel methods in H(grad) to graded bisection grids upon employing the decomposition of bisection grids of Chen, Nochetto, and Xu. We finally discuss a class of multilevel preconditioners developed by Hiptmair and Xu for problems discretized on unstructured grids and extend them to H(curl) and H(div) systems over graded bisection grids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Aksoylu and M. Holst. Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal., 44(3):1005–1025, 2006. MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D.N. Arnold. Differential complexes and numerical stability. Plenary address delivered at ICM 2002 International Congress of Mathematicians, 2004. Google Scholar
  3. 3.
    D.N. Arnold, R.S. Falk, and R. Winther. Preconditioning in H(div) and applications. Math. Comp., 66:957–984, 1997. MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D.N. Arnold, R.S. Falk, and R. Winther. Multigrid in H(div) and H(curl). Numer. Math., 85:197–218, 2000. MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D.N. Arnold, R.S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numer., pages 1–155, 2006. Google Scholar
  6. 6.
    D.N. Arnold, A. Mukherjee, and L. Pouly. Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput., 22(2):431–448, 2000. MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D.N. Arnold, L.R. Scott, and M. Vogelius. Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15(2):169–192, (1989), 1988. MathSciNetGoogle Scholar
  8. 8.
    R.E. Bank, A.H. Sherman, and A. Weiser. Refinement algorithms and data structures for regular local mesh refinement. In Scientific Computing, pages 3–17. IMACS/North-Holland Publishing Company, Amsterdam, 1983. Google Scholar
  9. 9.
    E. Bänsch. Local mesh refinement in 2 and 3 dimensions. Impact of Computing in Science and Engineering, 3:181–191, 1991. MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. Beck. Algebraic multigrid by component splitting for edge elements on simplicial triangulations. Technical Report SC 99-40, ZIB, Berlin, Germany, 1999. Google Scholar
  11. 11.
    T.C. Biedl, P. Bose, E.D. Demaine, and A. Lubiw. Efficient algorithms for Petersen’s matching theorem. In Symposium on Discrete Algorithms, pages 130–139, 1999. Google Scholar
  12. 12.
    P. Binev, W. Dahmen, and R. DeVore. Adaptive finite element methods with convergence rates. Numer. Math., 97(2):219–268, 2004. MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P.B. Bochev, J.J. Hu, C.M. Siefert, and R.S. Tuminaro. An Algebraic Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell’s Equations. SIAM J. Sci. Comput., 31:557–583, 2008. CrossRefMathSciNetGoogle Scholar
  14. 14.
    P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu. Compatible Gauge Approaches for H(div) Equations. In SNL-CSRI Proceeding, 2007. Google Scholar
  15. 15.
    F.A. Bornemann and H. Yserentant. A basic norm equivalence for the theory of multilevel methods. Numer. Math., 64:455–476, 1993. MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J.H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes in Mathematical Sciences. Longman Scientific & Technical, Essex, England, 1993. MATHGoogle Scholar
  17. 17.
    J.H. Bramble, J.E. Pasciak, and A.H. Schatz. The construction of preconditioners for elliptic problems by substructuring, IV. Math. Comp., 53:1–24, 1989. MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J.H. Bramble, J.E. Pasciak, J. Wang, and J. Xu. Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comp., 57:1–21, 1991. MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J.H. Bramble, J.E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp., 55(191):1–22, 1990. MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J.H. Bramble and J. Xu. Some estimates for a weighted L 2 projection. Math. Comp., 56:463–476, 1991. MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp., 31:333–390, 1977. MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    J.M. Cascón, R.H. Nochetto and K.G. Siebert. Design and Convergence of AFEM in H(div;Ω). Math. Models Methods Appl. Sci., 17:1849–1881, 2007. MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    J.M. Cascón, C. Kreuzer, R.H. Nochetto, and K.G. Siebert. Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524–2550, 2008. CrossRefMathSciNetGoogle Scholar
  24. 24.
    T.F. Chan and T.P. Mathew. Domain Decomposition Algorithms, volume 3 of Acta Numerica, pages 61–143. Cambridge University Press, Cambridge, 1994. Google Scholar
  25. 25.
    T.F. Chan and W.L. Wan. Robust multigrid methods for nonsmooth coefficient elliptic linear systems. J. Comput. Appl. Math., 123(12):323–352, 2000. - MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    L. Chen. iFEM: an innovative finite element methods package in MATLAB. Submitted, 2009. Google Scholar
  27. 27.
    L. Chen, R.H. Nochetto, and J. Xu. Local multilevel methods on graded bisection grids: H 1 problem. Technical report, University of Maryland at College Park, 2007. Google Scholar
  28. 28.
    L. Chen, R.H. Nochetto, and J. Xu. Local multilevel methods on graded bisection grids: H(curl and H(div) systems. Technical report, University of Maryland at College Park, 2008. Google Scholar
  29. 29.
    L. Chen and C.-S. Zhang. A coarsening algorithm and multilevel methods on adaptive grids by newest vertex bisection. Technical report, Department of Mathematics, University of Maryland at College Park, 2007. Google Scholar
  30. 30.
    D. Cho, J. Xu, and L. Zikatanov. New estimates for the rate of convergence of the method of subspace corrections. Numer. Math. Theor. Meth. Appl., 1:44–56, 2008. MATHMathSciNetGoogle Scholar
  31. 31.
    W. Dahmen and A. Kunoth. Multilevel preconditioning. Numer. Math., 63:315–344, 1992. MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    R.A. DeVore and G.G. Lorentz. Constructive Approximation. Spring-Verlag, New York, NY, 1993. MATHGoogle Scholar
  33. 33.
    M. Dryja, M.V. Sarkis, and O.B. Widlund. Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math., 72(3):313–348, 1996. MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    M. Dryja, B.F. Smith, and O.B. Widlund. Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal., 31, 1994. Google Scholar
  35. 35.
    R.G. Durán and M.A. Muschietti. An explicit right inverse of the divergence operator which is continuous in weighted norms. Studia Math., 148(3):207–219, 2001. MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    R.D. Falgout, J.E. Jones, and U.M. Yang. Pursuing scalability for hypre’s conceptual interfaces. ACM Trans. Math. Software, 31(3):326–350, 2005. MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    R.D. Falgout, J.E. Jones, and U.M. Yang. The design and implementation of hypre, a library of parallel high performance preconditioners. In Numerical solution of partial differential equations on parallel computers, volume 51 of Lect. Notes Comput. Sci. Eng., pages 267–294. Springer, Berlin, 2006. CrossRefGoogle Scholar
  38. 38.
    R.D. Falgout and U.M. Yang. Hypre: A Library of High Performance Preconditioners. In International Conference on Computational Science (3), pages 632–641, 2002. Google Scholar
  39. 39.
    V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations. Springer-Verlag, Berlin, 1986. MATHGoogle Scholar
  40. 40.
    G. Golub and C. van Loan. Matrix Computations. Johns Hopkins University Press, 1996. Google Scholar
  41. 41.
    I.G. Graham and M.J. Hagger. Unstructured additive Schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comput., 20:2041–2066, 1999. MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    M. Griebel and P. Oswald. On additive Schwarz preconditioners for sparse grid discretization. Numer. Math., 66:449–464, 1994. MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz methods. Numer. Math., 70:163–180, 1995. MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    W. Hackbusch. Multigrid Methods and Applications, volume 4 of Computational Mathematics. Springer–Verlag, Berlin, 1985. Google Scholar
  45. 45.
    W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations, volume 95 of Applied Mathematical Sciences. Springer-Verlag, New York, translated and revised from the 1991 german original edition, 1994. MATHGoogle Scholar
  46. 46.
    V.E. Henson and U.M. Yang. Boomeramg: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math., 41(1):155–177, 2002. MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    R. Hiptmair. Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal., 6:133–152, 1997. MATHMathSciNetGoogle Scholar
  48. 48.
    R. Hiptmair. Canonical construction of finite elements. Math. Comp., 68:1325–1346, 1999. MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36(1):204–225, 1999. unreadable. CrossRefMathSciNetGoogle Scholar
  50. 50.
    R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer., pages 237–339, 2002. Google Scholar
  51. 51.
    R. Hiptmair and A. Toselli. Overlapping and multilevel schwarz methods for vector valued elliptic problems in three dimensions. IMA Volumes in Mathematics and its Applications, 2000. Google Scholar
  52. 52.
    R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal., 45(6):2483–2509, 2007. MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    R. Hiptmair and W. Zheng. Local Multigrid in H(curl). J. Comput. Math., 27:573–603, 2009. CrossRefGoogle Scholar
  54. 54.
    T. Kolev and P.S. Vassilevski. Some experience with a H1-based auxiliary space AMG for H(curl) problems. Technical Report 221841, LLNL, 2006. Google Scholar
  55. 55.
    T.V. Kolev and P.S. Vassilevski. Parallel Auxiliary Space AMG For H(curl) Problems. J. Comput. Math., 27:604–623, 2009. CrossRefGoogle Scholar
  56. 56.
    I. Kossaczký. A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math., 55:275–288, 1994. MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Y. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly singular systems. M3AS, 17:1937–1963, 2007. MATHMathSciNetGoogle Scholar
  58. 58.
    A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on bisection. SIAM J. Sci. Comput., 16(6):1269–1291, 1995. MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    J. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput., 16(1):210–227, 1995. MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    W.F. Mitchell. Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems. PhD thesis, University of Illinois at Urbana-Champaign, 1988. Google Scholar
  61. 61.
    W.F. Mitchell. A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Software (TOMS) archive, 15(4):326–347, 1989. MATHCrossRefGoogle Scholar
  62. 62.
    W.F. Mitchell. Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comp., 13:146–167, 1992. MATHCrossRefGoogle Scholar
  63. 63.
    R. Nochetto, K. Siebert, and A. Veeser. Theory of adaptive finite element methods: an introduction. In R.A. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adaptive Approximation. Springer, 2009. Google Scholar
  64. 64.
    P. Oswald. On discrete norm estimates related to multilevel preconditioners in the finite element method. In Constructive Theory of Functions, Proc. Int. Conf. Varna 1991, pages 203–214, Sofia, 1992. Bulg. Acad. Sci. Google Scholar
  65. 65.
    P. Oswald. Multilevel Finite Element Approximation, Theory and Applications. Teubner Skripten zur Numerik. Teubner Verlag, Stuttgart, 1994. MATHGoogle Scholar
  66. 66.
    P. Oswald. On the robustness of the BPX-preconditioner with respect to jumps in the coefficients. Math. Comp., 68:633–650, 1999. MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    A. Plaza and G.F. Carey. Local refinement of simplicial grids based on the skeleton. Appl. Numer. Math., 32(2):195–218, 2000. MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    A. Plaza and M.-C. Rivara. Mesh refinement based on the 8-tetrahedra longest-edge partition. 12th meshing roundtable, pages 67–78, 2003. Google Scholar
  69. 69.
    M.C. Rivara. Mesh refinement processes based on the generalized bisection of simplexes. SIAM J. Numer. Anal., 21:604–613, 1984. MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    M.-C. Rivara and P. Inostroza. Using longest-side bisection techniques for the automatic refinement fo Delaunay triangulations. Int. J. Numer. Methods. Eng., 40:581–597, 1997. MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    M.C. Rivara and G. Iribarren. The 4-triangles longest-side partition of triangles and linear refinement algorithms. Math. Comp., 65(216):1485–1501, 1996. MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    M.C. Rivara and M. Venere. Cost analysis of the longest-side (triangle bisection) refinement algorithms for triangulations. Engineering with Computers, 12:224–234, 1996. CrossRefGoogle Scholar
  73. 73.
    J.W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S.F. McCormick, editor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, Philadelphia, PA, 1987. Google Scholar
  74. 74.
    A. Schmidt and K.G. Siebert. Design of Adaptive Finite Element Software, volume 42 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2005. The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux). MATHGoogle Scholar
  75. 75.
    R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54:483–493, 1990. MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    E.G. Sewell. Automatic generation of triangulations for piecewise polynomial approximation. In Ph. D. dissertation. Purdue Univ., West Lafayette, Ind., 1972. Google Scholar
  77. 77.
    B.F. Smith. A domain decomposition algorithm for elliptic problems in three dimensions. Numer. Math., 60:219–234, 1991. CrossRefMathSciNetGoogle Scholar
  78. 78.
    R. Stevenson. Stable three-point wavelet bases on general meshes. Numer. Math., 80(1):131–158, 1998. V MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    R. Stevenson. Optimality of a standard adaptive finite element method. Found. Comput. Math., 7(2):245–269, 2007. MATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    R. Stevenson. The completion of locally refined simplicial partitions created by bisection. Math. Comp., 77:227–241, 2008. MATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    K. Stüben. An introduction to algebraic multigrid. In U. Trottenberg, C. Oosterlee, and A. Schüller, editors, Multigrid, pages 413–528. Academic Press, San Diego, CA, 2001. Google Scholar
  82. 82.
    A. Toselli and O. Widlund. Domain Decomposition Methods: Algorithms and Theory. Springer Series in Computational Mathematics, 2005. Google Scholar
  83. 83.
    C.T. Traxler. An algorithm for adaptive mesh refinement in n dimensions. Computing, 59(2):115–137, 1997. MATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    C. Vuik, A. Segal, and J.A. Meijerink. An efficient preconditioned cg method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys., 152(1):385–403, June 1999. MATHCrossRefGoogle Scholar
  85. 85.
    J. Wang. New convergence estimates for multilevel algorithms for finite-element approximations. J. Comput. Appl. Math., 50:593–604, 1994. MATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    J. Wang and R. Xie. Domain decomposition for elliptic problems with large jumps in coefficients. In the Proceedings of Conference on Scientific and Engineering Computing, pages 74–86. National Defense Industry Press, 1994. Google Scholar
  87. 87.
    O.B. Widlund. Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In D.E. Keyes, T.F. Chan, G.A. Meurant, J.S. Scroggs, and R.G. Voigt, editors, Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 19–36, Philadelphia, 1992. SIAM. Google Scholar
  88. 88.
    B.I. Wohlmuth, A. Toselli, and O.B. Widlund. An iterative substructuring method for Raviart–Thomas vector fields in three dimensions. SIAM J. Numer. Anal., 37(5):1657–1676, 2000. MATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    H. Wu and Z. Chen. Uniform convergence of multigrid v-cycle on adaptively refined finite element meshes for second order elliptic problems. Science in China: Series A Mathematics, 49(1):1–28, 2006. MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    J. Xu. Counter examples concerning a weighted L 2 projection. Math. Comp., 57:563–568, 1991. MATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34:581–613, 1992. MATHCrossRefMathSciNetGoogle Scholar
  92. 92.
    J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes. Computing, 56:215–235, 1996. MATHCrossRefMathSciNetGoogle Scholar
  93. 93.
    J. Xu and Y. Zhu. Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. M3AS, 2007. Google Scholar
  94. 94.
    J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc., 15:573–597, 2002. MATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    J. Xu and J. Zou. Some nonoverlapping domain decomposition methods. SIAM Rev., 40(4):857–914, 1998. MATHCrossRefMathSciNetGoogle Scholar
  96. 96.
    H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numer., pages 285–326, 1993. Google Scholar
  97. 97.
    Y. Zhu. Domain decomposition preconditioners for elliptic equations with jump coefficients. Numer. Linear Algebra Appl., 15:271–289, 2008. CrossRefMathSciNetGoogle Scholar
  98. 98.
    L. Zikatanov. Two-sided bounds on the convergence rate of two-level methods. Numer. Linear Algebra Appl., 15(5):439–454, 2008. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.LMAM, The School of Mathematical SciencesPeking UniversityBeijingChina
  3. 3.Department of MathematicsUniversity of California at IrvineIrvineUSA
  4. 4.Department of Mathematics and Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations