Theory of adaptive finite element methods: An introduction

  • Ricardo H. Nochetto
  • Kunibert G. Siebert
  • Andreas Veeser
Conference paper

Abstract

This is a survey on the theory of adaptive finite element methods (AFEM), which are fundamental in modern computational science and engineering. We present a self-contained and up-to-date discussion of AFEM for linear second order elliptic partial differential equations (PDEs) and dimension d>1, with emphasis on the differences and advantages of AFEM over standard FEM. The material is organized in chapters with problems that extend and complement the theory. We start with the functional framework, inf-sup theory, and Petrov-Galerkin method, which are the basis of FEM. We next address four topics of essence in the theory of AFEM that cannot be found in one single article: mesh refinement by bisection, piecewise polynomial approximation in graded meshes, a posteriori error analysis, and convergence and optimal decay rates of AFEM. The first topic is of geometric and combinatorial nature, and describes bisection as a rather simple and efficient technique to create conforming graded meshes with optimal complexity. The second topic explores the potentials of FEM to compensate singular behavior with local resolution and so reach optimal error decay. This theory, although insightful, is insufficient to deal with PDEs since it relies on knowing the exact solution. The third topic provides the missing link, namely a posteriori error estimators, which hinge exclusively on accessible data: we restrict ourselves to the simplest residual-type estimators and present a complete discussion of upper and lower bounds, along with the concept of oscillation and its critical role. The fourth topic refers to the convergence of adaptive loops and its comparison with quasi-uniform refinement. We first show, under rather modest assumptions on the problem class and AFEM, convergence in the natural norm associated to the variational formulation. We next restrict the problem class to coercive symmetric bilinear forms, and show that AFEM is a contraction for a suitable error notion involving the induced energy norm. This property is then instrumental to prove optimal cardinality of AFEM for a class of singular functions, for which the standard FEM is suboptimal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Wiley (2000) Google Scholar
  2. 2.
    Arnold, D.N., Mukherjee, A., Pouly, L.: Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Atalay, F.B., Mount, D.M.: The cost of compatible refinement of simplex decomposition trees. In: Proc. International Meshing Roundtable 2006 (IMR 2006), pp. 57–69 (2006). Birmingham, AL Google Scholar
  4. 4.
    Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33(4), 447–471 (1979) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Babuška, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Babuška, I., Strouboulis, T.: The finite element method and its reliability. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York (2001) Google Scholar
  7. 7.
    Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44, 75–102 (1984) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. with the collaboration of G. Fix and R.B. Kellogg. Math. Found. Finite Elem. Method Appl. Part. Differ. Equations, Sympos. Univ. Maryland, Baltimore 1972, 1-359 (1972). (1972) Google Scholar
  10. 10.
    Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3, 181–191 (1991) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003) MATHMathSciNetGoogle Scholar
  12. 12.
    Beck, R., Hiptmair, R., Hoppe, R.H., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. Math. Model. Numer. Anal. 34(1), 159–182 (2000) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28(4), 391–416 (2002). Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday MATHMathSciNetGoogle Scholar
  15. 15.
    Braess, D.: Finite Elements. Theory, fast solvers, and applications in solid mechanics, 2nd edition. Cambridge University Press (2001) Google Scholar
  16. 16.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer Texts in Applied Mathematics 15 (2008) Google Scholar
  17. 17.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers. R.A.I.R.O. Anal. Numer. R2, T 129–151 (1974) MathSciNetGoogle Scholar
  18. 18.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15 (1991) Google Scholar
  19. 19.
    Carroll, R., Duff, G., Friberg, J., Gobert, J., Grisvard, P., Nečas, J., Seeley, R.: Equations aux dérivées partielles. No. 19 in Seminaire de mathematiques superieures. Les Presses de l’Université de Montréal (1966) Google Scholar
  20. 20.
    Carstensen, C., Funken, S.A.: Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21(4), 1465–1484 (electronic) (1999/00) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Cascón, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. Preprint 009/2007, Universität Augsburg (2007) Google Scholar
  22. 22.
    Cea, J.: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier 14(2), 345–444 (1964) MATHMathSciNetGoogle Scholar
  23. 23.
    Chen, L., Nochetto, R.H., Xu, J.: Adaptive multilevel methods on graded bisection grids. to appear (2009) Google Scholar
  24. 24.
    Chen, Z., Feng, J.: An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73, 1167–1042 (2006) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, 40, SIAM (2002) Google Scholar
  26. 26.
    Clément, P.: Approximation by finite element functions using local regularization. R.A.I.R.O. 9, 77–84 (1975) Google Scholar
  27. 27.
    Dahlke, S., DeVore, R.A.: Besov regularity for elliptic boundary value problems. Commun. Partial Differ. Equations 22(1-2), 1–16 (1997) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    DeVore, R.A.: Nonlinear approximation. In: A. Iserles (ed.) Acta Numerica, vol. 7, pp. 51–150. Cambridge University Press (1998) Google Scholar
  29. 29.
    DeVore, R.A., Lorentz, G.G. Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer-Verlag, Berlin (1993) MATHGoogle Scholar
  30. 30.
    DeVore, R.A., Popov, V.A.: Interpolation of Besov spaces. Trans. Amer. Math. Soc. 305(1), 397–414 (1988) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Diening, L., Kreuzer, C.: Convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46(2), 614–638 (2008) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics. 19. Providence, AMS (1998) Google Scholar
  36. 36.
    Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. 1: Linearized steady problems. Springer Tracts in Natural Philosophy, 38 (1994) Google Scholar
  37. 37.
    Gaspoz, F., Morin, P.: Approximation classes for adaptive higher order finite element approximation. (in preparation) (2009) Google Scholar
  38. 38.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics, Springer (2001) Google Scholar
  39. 39.
    Grisvard, P.: Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston, MA (1985) MATHGoogle Scholar
  40. 40.
    Hintermüller, M., Hoppe, R.H., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM, Control Optim. Calc. Var. 14(3), 540–560 (2008) MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Jarausch, H.: On an adaptive grid refining technique for finite element approximations. SIAM J. Sci. Stat. Comput. 7, 1105–1120 (1986) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Kato, T.: Estimation of iterated matrices, with application to the von Neumann condition. Numer. Math. 2, 22–29 (1960) MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Applicable Anal. 4, 101–129 (1974/75). Collection of articles dedicated to Nikolai Ivanovich Muskhelishvili MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994) MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Lax, P., Milgram, A.: Parabolic equations. Ann. Math. Stud. 33, 167–190 (1954) MATHMathSciNetGoogle Scholar
  46. 46.
    Liu, A., Joe, B.: Quality local refinement of tetrahedral meshes based on bisection. SIAM J. Sci. Comput. 16, 1269–1291 (1995) MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995) MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43(5), 1803–1827 (2005) MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Mitchell, W.F.: Unified multilevel adaptive finite element methods for elliptic problems. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana (1988) Google Scholar
  50. 50.
    Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15, 326–347 (1989) MATHCrossRefGoogle Scholar
  51. 51.
    Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press. xiv, 450 p. (2003) Google Scholar
  52. 52.
    Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000) MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Review 44, 631–658 (2002) MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Morin, P., Nochetto, R.H., Siebert, K.G.: Local problems on stars: A posteriori error estimators, convergence, and performance. Math. Comp. 72, 1067–1097 (2003) MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Morin, P., Siebert, K.G., Veeser, A.: A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. 18 (2008) 18, 707–737 (2008) MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Necas, J.: Sur une méthode pour resoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 16, 305–326 (1962) MATHMathSciNetGoogle Scholar
  57. 57.
    Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates. Math. Comp. 57(195), 73–108 (1991), S1–S11 CrossRefMathSciNetGoogle Scholar
  58. 58.
    Oswald, P.: On function spaces related to finite element approximation theory. Z. Anal. Anwendungen 9(1), 43–64 (1990) MATHMathSciNetGoogle Scholar
  59. 59.
    Otto, F.: On the Babuška–Brezzi condition for the Taylor–Hood element. Diploma thesis Universität Bonn (1990). In German Google Scholar
  60. 60.
    Payne, L.E., Weinberger, H.F.: An optimal Poincaré-inequality for convex domains. Archive Rat. Mech. Anal. 5, 286–292 (1960) MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Rivara, M.C.: Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal. 21(3), 604–613 (1984) MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Sacchi, R., Veeser, A.: Locally efficient and reliable a posteriori error estimators for Dirichlet problems. Math. Models Methods Appl. Sci. 16(3), 319–346 (2006) MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Schmidt, A., Siebert, K.G.: Design of adaptive finite element software. The finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering 42, Springer (2005) Google Scholar
  64. 64.
    Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comp. 77(262), 633–649 (2008) MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation 54(190), 483–493 (1990) MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Sewell, E.G.: Automatic generation of triangulations for piecewise polynomial approximation. Ph.D. dissertation, Purdue Univ., West Lafayette, Ind., 1972 Google Scholar
  67. 67.
    Siebert, K.G.: A convergence proof for adaptive finite elements without lower bound (2009). Preprint Universität Duisburg-Essen and Universität Freiburg No. 1/2009 Google Scholar
  68. 68.
    Siebert, K.G., Veeser, A.: A unilaterally constrained quadratic minimization with adaptive finite elements. SIAM J. Optim. 18(1), 260–289 (2007) MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007) MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008) MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Storoženko, È.A., Oswald, P.: Jackson’s theorem in the spaces L p(R k), 0<p<1. Sibirsk. Mat. Ž. 19(4), 888–901, 956 (1978) MathSciNetGoogle Scholar
  72. 72.
    Traxler, C.T.: An algorithm for adaptive mesh refinement in n dimensions. Computing 59(2), 115–137 (1997) MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Veeser, A.: Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92(4), 743–770 (2002) MATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Veeser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. (to appear) Google Scholar
  75. 75.
    Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989) MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Adv. Numer. Math. John Wiley, Chichester, UK (1996) MATHGoogle Scholar
  77. 77.
    Wu, H., Chen, Z.: Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A 49(10), 1405–1429 (2006) MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for H(grad), H(curl) and H(div) systems on graded and unstructured grids, R.A. DeVore and A. Kunoth eds., Multiscale, Nonlinear and Adaptive Approximation, pp. 599–659. Springer 2009. Google Scholar
  79. 79.
    Xu, J., Zikatanov, L.: Some observations on Babuška and Brezzi theories. Numer. Math. 94(1), 195–202 (2003) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ricardo H. Nochetto
    • 1
  • Kunibert G. Siebert
    • 2
  • Andreas Veeser
    • 3
  1. 1.Department of Mathematics and Institute of Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.Fakultät für MathematikUniversität Duisburg-EssenDuisburgGermany
  3. 3.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations