A Pseudopolynomial Algorithm for Alexandrov’s Theorem

  • Daniel Kane
  • Gregory N. Price
  • Erik D. Demaine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5664)

Abstract

Alexandrov’s Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of some convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution is the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005)MATHGoogle Scholar
  2. 2.
    Bobenko, A.I., Izmestiev, I.: Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Annales de l’Institut Fourier (2006) arXiv:math.DG/0609447Google Scholar
  3. 3.
    Cauchy, A.L.: Sur les polygones et les polyèdres, seconde mémoire. J. École Polytechnique, XVIe Cahier, Tome IX, 113–148 (1813); OEuvres Complètes, IIe Sèrie, Paris, vol. 1, pp. 26–38 (1905)Google Scholar
  4. 4.
    Demaine, E.D., Demaine, M.L., Lubiw, A., O’Rourke, J.: Enumerating foldings and unfoldings between polygons and polytopes. Graphs Comb. 18, 93–104 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Fedorchuk, M., Pak, I.: Rigidity and polynomial invariants of convex polytopes. Duke Math. J. 129, 371–404 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Glickenstein, D.: Geometric triangulations and discrete Laplacians on manifolds (2005) arXiv:math/0508188v1Google Scholar
  8. 8.
    Kane, D., Price, G.N., Demaine, E.D.: A pseudopolynomial algorithm for Alexandrov’s theorem (2008) arXiv:0812.5030Google Scholar
  9. 9.
    Lubiw, A., O’Rourke, J.: When can a polygon fold to a polytope? Technical Report 048, Department of Computer Science, Smith College (1996); presented at Am. Math. Soc. Conf., October 5 (1996)Google Scholar
  10. 10.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sabitov, I.: The volume of a polyhedron as a function of its metric. Fundam. Prikl. Mat. 2(4), 1235–1246 (1996)MathSciNetMATHGoogle Scholar
  12. 12.
    Sabitov, I.: The volume of a polyhedron as a function of its metric and algorithmical solution of the main problems in the metric theory of polyhedra. In: International School-Seminar Devoted to the N. V. Efimov’s Memory, pp. 64–65 (1996)Google Scholar
  13. 13.
    Sabitov, I.: The volume as a metric invariant of polyhedra. Discrete Comput. Geom. 20, 405–425 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sechelmann, S.: Alexandrov polyhedron editor (2006), http://www.math.tu-berlin.de/geometrie/ps/software.shtml#AlexandrovPolyhedron

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Kane
    • 1
  • Gregory N. Price
    • 2
  • Erik D. Demaine
    • 2
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA

Personalised recommendations