Advertisement

Finding a Hausdorff Core of a Polygon: On Convex Polygon Containment with Bounded Hausdorff Distance

  • Reza Dorrigiv
  • Stephane Durocher
  • Arash Farzan
  • Robert Fraser
  • Alejandro López-Ortiz
  • J. Ian Munro
  • Alejandro Salinger
  • Matthew Skala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5664)

Abstract

Given a simple polygon P, we consider the problem of finding a convex polygon Q contained in P that minimizes H(P,Q), where H denotes the Hausdorff distance. We call such a polygon Q a Hausdorff core of P. We describe polynomial-time approximations for both the minimization and decision versions of the Hausdorff core problem, and we provide an argument supporting the hardness of the problem.

Keywords

Convex Hull Convex Polygon Dynamic Programming Algorithm Interval Graph Simple Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Arge, L., Murali, T.M., Varadarajan, K.R., Vitter, J.S.: I/O-efficient algorithms for contour-line extraction and planar graph blocking. In: Proc. SODA, pp. 117–126. SIAM, Philadelphia (1998)Google Scholar
  2. 2.
    Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithm. Algorithmica 2(1), 195–208 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aggarwal, A., Park, J.: Notes on searching in multidimensional monotone arrays. In: Proc. SFCS, pp. 497–512. IEEE Computer Society Press, Los Alamitos (1988)Google Scholar
  4. 4.
    Bajaj, C.: The algebraic degree of geometric optimization problems. Disc. & Comp. Geom. 3, 177–191 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bhattacharya, B.K., Mukhopadhyay, A.: On the minimum perimeter triangle enclosing a convex polygon. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 84–96. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bose, P., Toussaint, G.: Computing the constrained Euclidean geodesic and link center of a simple polygon with applications. In: Proc. CGI, p. 102. IEEE, Los Alamitos (1996)CrossRefGoogle Scholar
  7. 7.
    Chang, J.S., Yap, C.K.: A polynomial solution for the potato-peeling problem. Disc. & Comp. Geom. 1(1), 155–182 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chassery, J.-M., Coeurjolly, D.: Optimal shape and inclusion. In: Mathematical Morphology: 40 Years On, vol. 30, pp. 229–248. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Dobkin, D.P., Snyder, L.: On a general method for maximizing and minimizing among certain geometric problems. In: Proc. SFCS, pp. 9–17 (1979)Google Scholar
  10. 10.
    Fekete, S.P., Mitchell, J.S.B., Weinbrecht, K.: On the continuous Fermat-Weber problem. Oper. Res. 53, 61–76 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hakimi, S.L.: Location theory. In: Rosen, Michaels, Gross, Grossman, Shier (eds.) Handbook Disc. & Comb. Math. CRC Press, Boca Raton (2000)Google Scholar
  12. 12.
    Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comp. 12(1), 28–35 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Lin. Alg. & App. 284(1–3), 193–228 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lopez, M.A., Reisner, S.: Hausdorff approximation of convex polygons. Comp. Geom. Theory & App. 32(2), 139–158 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Melissaratos, E.A., Souvaine, D.L.: On solving geometric optimization problems using shortest paths. In: Proc. SoCG, pp. 350–359. ACM Press, New York (1990)Google Scholar
  16. 16.
    O’Rourke, J., Aggarwal, A., Maddila, S., Baldwin, M.: An optimal algorithm for finding minimal enclosing triangles. J. Alg. 7, 258–269 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schwarz, C., Teich, J., Vainshtein, A., Welzl, E., Evans, B.L.: Minimal enclosing parallelogram with application. In: Proc. SoCG, pp. 434–435. ACM Press, New York (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Reza Dorrigiv
    • 1
  • Stephane Durocher
    • 1
    • 2
  • Arash Farzan
    • 1
  • Robert Fraser
    • 1
  • Alejandro López-Ortiz
    • 1
  • J. Ian Munro
    • 1
  • Alejandro Salinger
    • 1
  • Matthew Skala
    • 1
    • 3
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of Computer ScienceUniversity of ManitobaWinnipegCanada
  3. 3.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations