Approximation Algorithms for Buy-at-Bulk Geometric Network Design

  • Artur Czumaj
  • Jurek Czyzowicz
  • Leszek Gąsieniec
  • Jesper Jansson
  • Andrzej Lingas
  • Pawel Zylinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5664)


The buy-at-bulk network design problem has been extensively studied in the general graph model. In this paper we consider the geometric version of the problem, where all points in a Euclidean space are candidates for network nodes. We present the first general approach for geometric versions of basic variants of the buy-at-bulk network design problem. It enables us to obtain quasi-polynomial-time approximation schemes for basic variants of the buy-at-bulk geometric network design problem with polynomial total demand. Then, for instances with few sinks and low capacity links, we design very fast polynomial-time low-constant approximations algorithms.


Approximation Algorithm Network Design Voronoi Diagram Steiner Tree Total Demand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians and related problems. In: Proc. 30th ACM STOC, pp. 106–113 (1998)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: Proc 38th IEEE FOCS, pp. 542–547 (1997)Google Scholar
  4. 4.
    Bienstock, D., Chopra, S., Günlük, O., Tsai, C.-Y.: Minimum cost capacity installation for multicommodity network flows. Mathematical Programming 81(2), 177–199 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chekuri, C., Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Polylogarithmic approximation algorithms for non-uniform multicommodity buy-at-bulk network design. In: Proc. 47th IEEE FOCS, pp. 677–686 (2006)Google Scholar
  6. 6.
    Chekuri, C., Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Approximation algorithms for node-weighted buy-at-bulk network design. In: SODA, pp. 1265–1274 (2007)Google Scholar
  7. 7.
    Chopra, S., Gilboa, I., Sastry, S.T.: Source sink flows with capacity installation in batches. Discrete Applied Mathematics 85(3), 165–192 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Czumaj, A., Lingas, A.: On approximability of the minimum-cost k-connected spanning subgraph problem. In: Proc. 10th IEEE-SIAM SODA, pp. 281–290 (1999)Google Scholar
  9. 9.
    Czumaj, A., Lingas, A.: Fast approximation schemes for euclidean multi-connectivity problems. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 856–868. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: Proc. 35th ACM STOC, pp. 365–372 (2003)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  12. 12.
    Garg., N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On the integrality gap of a natural formulation of the single-sink buy-at-bulk network design problem. In: Proc. 8th IPCO, pp. 170–184 (2001)Google Scholar
  13. 13.
    Grandoni, F., Italiano, G.F.: Improved approximation for single-sink buy-at-bulk. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 111–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the single sink edge installation problem. In: Proc. 33rd ACM STOC, pp. 383–399 (2001)Google Scholar
  15. 15.
    Hassin, R., Ravi, R., Salman, F.S.: Approximation algorithms for a capacitated network design problem. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 167–176. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Hwang, F.K.: An O(nlogn) algorithm for rectilinear minimal spanning trees. JACM 26(2), 177–182 (1979)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jothi, R., Raghavachari, B.: Improved approximation algorithms for the single-sink buy-at-bulk network design problems. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 336–348. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Mansour, Y., Peleg, D.: An approximation algorithm for minimum-cost network design. Technical report, The Weizman Institute of Science, Revohot, Israel, CS94-22 (1994)Google Scholar
  19. 19.
    Meyerson, A., Munagala, K., Plotkin, S.: COST-DISTANCE: Two metric network design. In: Proc. 41st IEEE FOCS, pp. 624–630 (2000)Google Scholar
  20. 20.
    Minoux, M.: Discrete cost multicommodity network optimization problems and exact solution methods. Annals of Operations Research 106, 19–46 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Preparata, F., Shamos, M.: Computational Geometry. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rao, S.B., Smith, W.D.: Approximating geometrical graphs via “spanners” and “banyans”. In: Proc. ACM STOC, pp. 540–550 (1998); Full version appeared as TR, NEC (1998)Google Scholar
  23. 23.
    Salman, F.S., Cheriyan, J., Ravi, R., Subramanian, S.: Approximating the single-sink link-installation problem in network design. SIAM J. Optimization 11(3), 595–610 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Talwar, K.: Single-sink buy-at-bulk LP has constant integrality gap. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Zachariasen, M.: A catalog of Hanan grid problems. Networks 38(2), 76–83 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Artur Czumaj
    • 1
  • Jurek Czyzowicz
    • 2
  • Leszek Gąsieniec
    • 3
  • Jesper Jansson
    • 4
  • Andrzej Lingas
    • 5
  • Pawel Zylinski
    • 6
  1. 1.Centre for Discrete Mathematics and its Applications (DIMAP) and Department of Computer ScienceUniversity of WarwickUK
  2. 2.Departement d’InformatiqueUniversite du Quebec en Outaouais, GatineauQuebecCanada
  3. 3.Department of Computer ScienceUniversity of LiverpoolUK
  4. 4.Ochanomizu UniversityTokyoJapan
  5. 5.Department of Computer ScienceLund UniversityLundSweden
  6. 6.Institute of Computer ScienceUniversity of GdańskGdańskPoland

Personalised recommendations