Delaunay Triangulation of Imprecise Points Simplified and Extended

  • Kevin Buchin
  • Maarten Löffler
  • Pat Morin
  • Wolfgang Mulzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5664)


Suppose we want to compute the Delaunay triangulation of a set P whose points are restricted to a collection \({\mathcal R}\) of input regions known in advance. Building on recent work by Löffler and Snoeyink[21], we show how to leverage our knowledge of \({\mathcal R}\) for faster Delaunay computation. Our approach needs no fancy machinery and optimally handles a wide variety of inputs, eg, overlapping disks of different sizes and fat regions.


Delaunay Triangulation Cluster Node Expected Time Binary Space Partition Algebraic Computation Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM Journal on Computing 38(3), 899–921 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: Nearest neighbor relations for imprecise points. In: SODA, pp. 403–412 (2004)Google Scholar
  3. 3.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: STOC, pp. 80–86 (1983)Google Scholar
  4. 4.
    Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput. System Sci. 48(3), 384–409 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bern, M., Eppstein, D., Teng, S.-H.: Parallel construction of quadtrees and quality triangulations. Internat. J. Comput. Geom. Appl. 9(6), 517–532 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chazelle, B.: Triangulating a simple polygon in linear time. Disc. and Comp. Geometry 6, 485–524 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chazelle, B., Mulzer, W.: Computing hereditary convex structures. To appear in SoCG (2009)Google Scholar
  10. 10.
    Clarkson, K.L., Seshadhri, C.: Self-improving algorithms for Delaunay triangulations. In: SoCG, pp. 148–155 (2008)Google Scholar
  11. 11.
    de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28(3), 353–366 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry, 3rd edn. Springer, Berlin (2000); Algorithms and applicationsCrossRefzbMATHGoogle Scholar
  13. 13.
    de Berg, M., David, H., Katz, M.J., Overmars, M.H., van der Stappen, A.F., Vleugels, J.: Guarding scenes against invasive hypercubes. Computational Geometry: Theory and Applications 26(2), 99–117 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input models for geometric algorithms. Algorithmica 34(1), 81–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Djidjev, H.N., Lingas, A.: On computing Voronoi diagrams for sorted point sets. Internat. J. Comput. Geom. Appl. 5(3), 327–337 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Franciosa, P.G., Gaibisso, C., Gambosi, G., Talamo, M.: A convex hull algorithm for points with approximately known positions. Internat. J. Comput. Geom. Appl. 4(2), 153–163 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: SoCG, pp. 208–217 (1989)Google Scholar
  18. 18.
    Guibas, L.J., Salesin, D., Stolfi, J.: Constructing strongly convex approximate hulls with inaccurate primitives. Algorithmica 9, 534–560 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Held, M., Mitchell, J.S.B.: Triangulating input-constrained planar point sets. Inf. Process. Lett. 109(1), 54–56 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: FOCS, pp. 18–27 (1979)Google Scholar
  21. 21.
    Löffler, M., Snoeyink, J.: Delaunay triangulations of imprecise points in linear time after preprocessing. In: SoCG, pp. 298–304 (2008)Google Scholar
  22. 22.
    Rajan, V.T.: Optimality of the Delaunay triangulation in ℝd. Disc. and Comp. Geometry 12, 189–202 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    van Kreveld, M.J., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangulations. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 544–555. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Maarten Löffler
    • 2
  • Pat Morin
    • 3
  • Wolfgang Mulzer
    • 4
  1. 1.Dep. of Mathematics and Computer ScienceTU EindhovenThe Netherlands
  2. 2.Dep.of Information and Computing SciencesUtrecht UniversityThe Netherlands
  3. 3.School of Computer ScienceCarleton UniversityCanada
  4. 4.Department of Computer SciencePrinceton UniversityUSA

Personalised recommendations