Probabilistically Checkable Arguments

  • Yael Tauman Kalai
  • Ran Raz
Conference paper

DOI: 10.1007/978-3-642-03356-8_9

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5677)
Cite this paper as:
Kalai Y.T., Raz R. (2009) Probabilistically Checkable Arguments. In: Halevi S. (eds) Advances in Cryptology - CRYPTO 2009. Lecture Notes in Computer Science, vol 5677. Springer, Berlin, Heidelberg


We give a general reduction that converts any public-coin interactive proof into a one-round (two-message) argument. The reduction relies on a method proposed by Aiello et al. [1], of using a Private-Information-Retrieval (PIR) scheme to collapse rounds in interactive protocols. For example, the reduction implies that for any security parameter t, the membership in any language in PSPACE can be proved by a one-round (two-message) argument of size poly(n,t), which is sound for malicious provers of size 2t. (Note that the honest prover in this construction runs in exponential time, since she has to prove membership in PSPACE, but we can choose t such that 2t is significantly larger than the running time of the honest prover).

A probabilistically checkable argument (PCA) is a relaxation of the notion of probabilistically checkable proof (PCP). It is defined analogously to PCP, except that the soundness property is required to hold only computationally. We consider the model where the argument is of one round (two-message), where the verifier’s message depends only on his (private) randomness. We show that for membership in many NP languages, there are PCAs (with efficient honest provers) that are of size polynomial in the size of the witness. This compares to the best PCPs that are of size polynomial in the size of the instance (that may be significantly larger). The number of queries to these PCAs is poly-logarithmic.

The soundness property, in all our results, relies on exponential hardness assumptions for PIR schemes.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yael Tauman Kalai
    • 1
  • Ran Raz
    • 2
  1. 1.Microsoft ResearchUSA
  2. 2.Weizmann InstituteUSA

Personalised recommendations