Private Mutual Authentication and Conditional Oblivious Transfer

  • Stanisław Jarecki
  • Xiaomin Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5677)

Abstract

A bi-directional Private Authentication, or Unlinkable Secret Handshake, allows two parties to authenticate each other as certified by given certification authorities (i.e. affiliated with given groups), in a mutually private way, in the sense that the protocol leaks no information about either participant to a party which does not satisfy that participant’s authentication policy. In particular, the protocol hides what group this participant belongs to, and protocol instances involving the same participant are unlinkable. We construct the first realization of such private authentication using O(1) exponentiations and bilinear maps, secure under Strong Diffie-Hellman and Decisional Linear assumptions.

Our protocols rely on a novel technical tool, a family of efficient Private Conditional Oblivious Transfer (COT) protocols, secure under DDH, for languages defined by modular arithmetic constraints (e.g. equality, inequality, sums, products) on discrete-log representations of some group elements. (Recall that (w1,...,w n ) is a representation of C in bases (g1,...,g n ) if \(C=g_1^{w_1}...g_n^{w_n}\).) A COT protocol for language L allows sender S to encrypt message m “under” statement x so that receiver R gets m only if R holds a witness for membership of x in L, while S learns nothing. A private COT for L hides not only message m but also statement x from any R that does not know a witness for x in L.

References

  1. [AIR01]
    Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. [BBS04]
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. [BBW06]
    Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. [BCK01]
    Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key-exchange protocols. In: Symposium on Theory of Computing (2001)Google Scholar
  5. [BDS+03]
    Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.-C.: Secret handshakes from pairing-based key agreements. In: IEEE Symposium on Security and Privacy, pp. 180–196 (2003)Google Scholar
  6. [BGW05]
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [BK04]
    Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [Bou00]
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. [BS04]
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM Conference on Computer and Communications Security, pp. 168–177 (2004)Google Scholar
  10. [BSW07]
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)Google Scholar
  11. [CDS94]
    Cramer, R., Damgård, I., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  12. [CJT04]
    Castelluccia, C., Jarecki, S., Tsudik, G.: Secret handshakes from ca-oblivious encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. [CL01]
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. [CM99]
    Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. [COR99]
    Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. [Cre00]
    Di Crescenzo, G.: Private selective payment protocols. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 72–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. [CS01]
    Cramer, R., Shoup, V.: Universal hash proofs and and a paradigm for adaptive chosen ciphertext secure public-key encryption. Electronic Colloquium on Computational Complexity (ECCC), 8(072) (2001)Google Scholar
  18. [CvH91]
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  19. [Dam00]
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. [GPSW06]
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  21. [JKT07]
    Jarecki, S., Kim, J., Tsudik, G.: Group secret handshakes or affiliation-hiding authenticated group key agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 287–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. [JL07]
    Jarecki, S., Liu, X.: Unlinkable secret handshakes and key-private group key management schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 270–287. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. [JL08]
    Jarecki, S., Liu, X.: Affiliation-hiding envelope and authentication schemes with efficient support for multiple credentials. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 715–726. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. [KP97]
    Kilian, J., Petrank, E.: Identity escrow. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 169–185. Springer, Heidelberg (1997)Google Scholar
  25. [LL07]
    Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets and its applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 207–225. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. [MP03]
    Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. [NNL02]
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. Electronic Colloquium on Computational Complexity (ECCC), 043 (2002)Google Scholar
  28. [Ped91]
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  29. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stanisław Jarecki
    • 1
  • Xiaomin Liu
    • 1
  1. 1.University of CaliforniaIrvine

Personalised recommendations