The Round Complexity of Verifiable Secret Sharing Revisited

  • Arpita Patra
  • Ashish Choudhary
  • Tal Rabin
  • C. Pandu Rangan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5677)


The round complexity of interactive protocols is one of their most important complexity measures. In this work we prove that existing lower bounds for the round complexity of VSS can be circumvented by introducing a negligible probability of error in the reconstruction phase. Previous results show matching lower and upper bounds of three rounds for VSS, with n = 3t + 1, where the reconstruction of the secrets always succeeds, i.e. with probability 1. In contrast we show that with a negligible probability of error in the reconstruction phase:

  1. 1

    There exists an efficient 2-round VSS protocol for n = 3t + 1. If we assume that the adversary is non-rushing then we can achieve a 1-round reconstruction phase.

  2. 1

    There exists an efficient 1-round VSS for t = 1 and n > 3.

  3. 1

    We prove that our results are optimal both in resilience and number of sharing rounds by showing:

    1. 1

      There does not exist a 2-round WSS (and hence VSS) for n ≤ 3t.

    2. 1

      There does not exist a 1-round VSS protocol for t ≥ 2 and n ≥ 4.



  1. 1.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: STOC, pp. 1–10 (1988)Google Scholar
  2. 2.
    Chaum, D., Crpeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols. In: FOCS, pp. 11–19 (1988)Google Scholar
  3. 3.
    Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults. In: STOC, pp. 383–395 (1985)Google Scholar
  4. 4.
    Cramer, R., Damgård, I., Dziembowski, S.: On the Complexity of Verifiable Secret Sharing and Multiparty Computation. In: STOC, pp. 325–334 (2000)Google Scholar
  5. 5.
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Multiparty Computations Secure Against an Adaptive Adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Damgård, I., Maurer, U.M.: General Secure Multi-Party Computation from Any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmission. JACM 40(1), 17–47 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dwork, C.: Strong Verifiable Secret Sharing. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 213–227. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Feldman, P.: A Practical Scheme for Non-Interactive Verifiable Secret Sharing. In: FOCS, pp. 427–437 (1987)Google Scholar
  10. 10.
    Fitzi, M., Garay, J., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-Optimal and Efficient Verifiable Secret Sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity of Verifiable Secret Sharing and Secure Multicast. In: STOC, pp. 580–589 (2001)Google Scholar
  12. 12.
    Golderich, O., Micali, S., Wigderson, A.: How to Play a Mental Game– a Completeness Theorem for Protocols with Honest Majority. In: STOC 1987, pp. 218–229 (1987)Google Scholar
  13. 13.
    Goldreich, O.: Secure Multiparty Computation (2007),
  14. 14.
    J. Katz, C. Koo, and R. Kumaresan. Improving the Round Complexity of VSS in Point-to-Point Networks. Cryptology ePrint 2007/358; In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 499–510. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Patra, A., Choudhary, A., Rabin, T., Pandu Rangan, C.: The Round Complexity of Verifiable Secret Sharing Revisited. Cryptology ePrint 2008/172Google Scholar
  16. 16.
    Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Rabin, T.: Robust Sharing of Secrets When the Dealer is Honest or Cheating. J. ACM 41(6), 1089–1109 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: STOC, pp. 73–85 (1989)Google Scholar
  19. 19.
    Shamir, A.: How to Share a Secret. Comm. of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tompa, M., Woll, H.: How to Share a Secret with Cheaters. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 261–265. Springer, Heidelberg (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arpita Patra
    • 1
  • Ashish Choudhary
    • 1
  • Tal Rabin
    • 2
  • C. Pandu Rangan
    • 1
  1. 1.Dept of Computer Science and EngineeringIIT MadrasChennaiIndia
  2. 2.IBM T.J. Watson Research CenterUSA

Personalised recommendations