Improving the Security of Quantum Protocols via Commit-and-Open

  • Ivan Damgård
  • Serge Fehr
  • Carolin Lunemann
  • Louis Salvail
  • Christian Schaffner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5677)


We consider two-party quantum protocols starting with a transmission of some random BB84 qubits followed by classical messages. We show a general “compiler” improving the security of such protocols: if the original protocol is secure against an “almost honest” adversary, then the compiled protocol is secure against an arbitrary computationally bounded (quantum) adversary. The compilation preserves the number of qubits sent and the number of rounds up to a constant factor. The compiler also preserves security in the bounded-quantum-storage model (BQSM), so if the original protocol was BQSM-secure, the compiled protocol can only be broken by an adversary who has large quantum memory and large computing power. This is in contrast to known BQSM-secure protocols, where security breaks down completely if the adversary has larger quantum memory than expected. We show how our technique can be applied to quantum identification and oblivious transfer protocols.


  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Crépeau, C., Dumais, P., Mayers, D., Salvail, L.: Computational collapse of quantum state with application to oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 374–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Damgård, I.B., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the security of quantum protocols (2009),
  4. 4.
    Damgård, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order entropic quantum uncertainty relation with applications. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Damgård, I.B., Fehr, S., Salvail, L.: Zero-knowledge proofs and string commitments withstanding quantum attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 254–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 449–458 (2005),
  7. 7.
    Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and QKD in the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 342–359. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-quantum-storage model. SIAM Journal on Computing 37(6), 1865–1890 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Damgård, I.B., Lunemann, C.: Quantum-secure coin-flipping and applications (2009),
  10. 10.
    Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In: Theory of Cryptography Conference (TCC). LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kol, G., Naor, M.: Games for exchanging information. In: TCC 2008. LNCS, vol. 4948, pp. 423–432. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Lo, H.-K.: Insecurity of quantum secure computations. Physical Review A 56(2), 1154–1162 (1997)CrossRefGoogle Scholar
  14. 14.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  15. 15.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 84–93 (2005)Google Scholar
  17. 17.
    Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Sipser, M., Spielman, D.A.: Expander codes. IEEE Transactions on Information Theory 42(6), 1710–1722 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Watrous, J.: Zero-knowledge against quantum attacks. In: 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 296–305 (2006),
  20. 20.
    Wehner, S., Schaffner, C., Terhal, B.M.: Cryptography from noisy storage. Physical Review Letters 100(22), 220–502 (2008)CrossRefMATHGoogle Scholar
  21. 21.
    Yao, A.C.-C.: Security of quantum protocols against coherent measurements. In: 27th Annual ACM Symposium on the Theory of Computing (STOC), pp. 67–75 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Serge Fehr
    • 2
  • Carolin Lunemann
    • 1
  • Louis Salvail
    • 3
  • Christian Schaffner
    • 2
  1. 1.DAIMIAarhus UniversityDenmark
  2. 2.Centrum Wiskunde & Informatica (CWI) AmsterdamThe Netherlands
  3. 3.Université de Montréal (DIRO)Canada

Personalised recommendations