How to Hash into Elliptic Curves

  • Thomas Icart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5677)

Abstract

We describe a new explicit function that given an elliptic curve E defined over \(\mathbb F_{p^n}\), maps elements of \(\mathbb F_{p^n}\) into E in deterministic polynomial time and in a constant number of operations over \(\mathbb F_{p^n}\). The function requires to compute a cube root. As an application we show how to hash deterministically into an elliptic curve.

References

  1. 1.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptology 17(4), 297–319 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boyd, C., Montague, P., Nguyen, K.Q.: Elliptic curve based password authenticated key exchange protocols. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 487–501. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: The twist-augmented technique for key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Icart, T.: How to hash into an elliptic-curve. Publicly, http://eprint.iacr.org/2009/226
  7. 7.
    Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev. 26(5), 5–26 (1996)CrossRefGoogle Scholar
  8. 8.
    Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms, 512 pages. Addison-Wesley Publishing Company, Reading (1996)MATHGoogle Scholar
  10. 10.
    Shallue, A., van de Woestijne, C.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Shoup, V.: Ntl, Number Theory C++ Library, http://www.shoup.net/ntl/
  12. 12.
    Shoup, V.: A new polynomial factorization algorithm and its implementation. J. Symb. Comput. 20(4), 363–397 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Skalba, M.: Points on elliptic curves over finite fields. Acta Arith. 117, 293–301 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Icart
    • 1
  1. 1.Sagem SécuritéUniversité du LuxembourgLuxembourg

Personalised recommendations