Distinguisher and Related-Key Attack on the Full AES-256

  • Alex Biryukov
  • Dmitry Khovratovich
  • Ivica Nikolić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5677)

Abstract

In this paper we construct a chosen-key distinguisher and a related-key attack on the full 256-bit key AES. We define a notion of differential q-multicollision and show that for AES-256 q-multicollisions can be constructed in time q·267 and with negligible memory, while we prove that the same task for an ideal cipher of the same block size would require at least \(O(q\cdot 2^{\frac{q-1}{q+1}128})\) time. Using similar approach and with the same complexity we can also construct q-pseudo collisions for AES-256 in Davies-Meyer mode, a scheme which is provably secure in the ideal-cipher model. We have also computed partial q-multicollisions in time q·237 on a PC to verify our results. These results show that AES-256 can not model an ideal cipher in theoretical constructions. Finally we extend our results to find the first publicly known attack on the full 14-round AES-256: a related-key distinguisher which works for one out of every 235 keys with 2120 data and time complexity and negligible memory. This distinguisher is translated into a key-recovery attack with total complexity of 2131 time and 265 memory.

Keywords

AES related-key attack chosen key distinguisher Davies-Meyer ideal cipher 

References

  1. 1.
    Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash function. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328–340. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Daemen, J., Rijmen, V.: The Design of Rijndael. AES — the Advanced Encryption Standard. Springer, Heidelberg (2002)MATHGoogle Scholar
  6. 6.
    Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Jaulmes, É., Joux, A., Valette, F.: On the security of randomized cbc-mac beyond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Joux, A.: Multicollisions in iterated hash functions. Application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Khovratiovich, D., Biryukov, A., Nikolić, I.: Speeding up collision search for byte-oriented hash functions. In: CT-RSA 2009. LNCS, vol. 5473, pp. 164–181. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption Standard (November 2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  13. 13.
    National Security Agency (NSA). National Policy on the Use of the Advanced Encryption Standard (AES) to Protect National Security Systems and National Security Information (June 2003), http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf
  14. 14.
    Patarin, J.: A proof of security in O(2n) for the xor of two random permutations. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-collisions. IEICE Transactions 91-A(1), 39–45 (2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alex Biryukov
    • 1
  • Dmitry Khovratovich
    • 1
  • Ivica Nikolić
    • 1
  1. 1.University of LuxembourgLuxembourg

Personalised recommendations