Using Epidemic Hoarding to Minimize Load Delays in P2P Distributed Virtual Environments

  • Ingo Scholtes
  • Jean Botev
  • Markus Esch
  • Hermann Schloss
  • Peter Sturm
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 10)

Abstract

Distributed Virtual Environments (DVEs) have grown popular in various fields of application. Apart from providing great collaborational opportunities in an immersive setting, large-scale DVEs pose severe scalability challenges. Although P2P approaches have proven to be effective for tackling many of these issues, still load delay problems remain in regions with high object or avatar density. In this article we present and evaluate a hoarding approach that is suitable to minimize such delays in P2P-based DVEs with a real-time distribution of dynamic data. The prediction of what data shall be hoarded is based on an epidemic aggregation algorithm working solely with local knowledge. Evaluation results that have been obtained using a DVE simulation environment will be presented.

Keywords

DVE P2P Hoarding Gossiping Epidemic Aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bawa, M., Manku, G.S., Raghavan, P.: Sets: search enhanced by topic segmentation. In: SIGIR 2003: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, New York, USA, pp. 306–313. ACM, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Benford, S., Greenhalgh, C., Lloyd, D.: Crowded collaborative virtual environments. In: CHI 1997: Proceedings of the SIGCHI conference on Human factors in computing systems, New York, USA, pp. 59–66. ACM, New York (1997)Google Scholar
  4. 4.
    Botev, J., Esch, M., Hoehfeld, A., Schloss, H., Scholtes, I.: The hyperverse - concepts for a federated and torrent based ”3d web”. In: Proceedings of the First International Workshop on Massively Multiuser Virtual Environments at IEEE Virtual Reality 2008 (March 2008)Google Scholar
  5. 5.
    Boulanger, J.-S., Kienzle, J., Verbrugge, C.: Comparing interest management algorithms for massively multiplayer games. In: NetGames 2006: Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games, 6 p. ACM, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Bouras, C., Giannaka, E., Tsiatsos, T.: Partitioning of distributed virtual environments based on objects’ attributes. In: DS-RT 2007: Proceedings of the 11th IEEE International Symposium on Distributed Simulation and Real-Time Applications, Washington, DC, USA, pp. 72–75. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  7. 7.
    Chan, A., Lau, R.W.H., Ng, B.: Motion prediction for caching and prefetching in mouse-driven dve navigation. ACM Trans. Interet Technol. 5(1), 70–91 (2005)CrossRefGoogle Scholar
  8. 8.
    Chen, X., Heidemann, J.: Flash crowd mitigation via adaptive admission control based on application-level observations. ACM Trans. Interet Technol. 5(3), 532–569 (2005)CrossRefGoogle Scholar
  9. 9.
    Chiou, H., Su, A., Yang, S.: Interest-based peer selection in p2p network. In: International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 549–554 (2008)Google Scholar
  10. 10.
    Dorogovtsev, S., Mendes, J.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks (2007)Google Scholar
  12. 12.
    Han, S., Lim, M., Lee, D.: Scalable interest management using interest group based filtering for large networked virtual environments. In: VRST 2000: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 103–108. ACM, New York (2000)Google Scholar
  13. 13.
    Hu, S.-Y.: A case for 3d streaming on peer-to-peer networks. In: Web3D 2006: Proceedings of the eleventh international conference on 3D web technology, New York, USA, pp. 57–63. ACM, New York (2006)Google Scholar
  14. 14.
    Hu, S.-Y., Chen, J.-F., Chen, T.-H.: Von: a scalable peer-to-peer network for virtual environments. IEEE Network 20, 22–31 (2004)Google Scholar
  15. 15.
    Jelasity, M., Montresor, A.: Epidemic-style proactive aggregationin large overlay networks. In: Proceedings of the 24th International Conference on Distributed ComputingSystems (ICDCS 2004), Tokyo, Japan, pp. 102–109. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  16. 16.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)CrossRefGoogle Scholar
  17. 17.
    Lau, R.W.H., Chim, J.H.P., Green, M., Leong, H.V., Si, A.: Object caching and prefetching in distributed virtual walkthrough. Real-Time Syst. 21(1/2), 143–164 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Lee, D., Lim, M., Han, S.: Atlas: a scalable network framework for distributed virtual environments. In: CVE 2002: Proceedings of the 4th international conference on Collaborative virtual environments, pp. 47–54. ACM, New York (2002)Google Scholar
  19. 19.
    Lin, G., Noubir, G., Rajaraman, R.: Mobility models for ad hoc network simulation. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, vol. 1 (2004)Google Scholar
  20. 20.
    Morse, K.L., Bic, L., Dillencourt, M.: Interest management in large-scale virtual environments. Presence: Teleoper. Virtual Environ. 9(1), 52–68 (2000)CrossRefGoogle Scholar
  21. 21.
    Ramanathan, M.K., Kalogeraki, V., Pruyne, J.: Finding good peers in peer-to-peer networks. In: IPDPS 2002: Proceedings of the 16th International Parallel and Distributed Processing Symposium, Washington, DC, USA, P. 158. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  22. 22.
    Rozenfeld, A.F., Cohen, R.: Scale-free networks on lattices. Physical Review Letters 89, 218701 (2002)CrossRefGoogle Scholar
  23. 23.
    Scholtes, I., Botev, J., Esch, M., Hoehfeld, A., Schloss, H.: Awareness-driven phase transitions in very large scale distributed systems. In: Proceedings of the Second IEEE International Conferences on Self-Adaptive and Self-Organizing Systems (SaSo). IEEE, Los Alamitos (2008)Google Scholar
  24. 24.
    Scholtes, I., Botev, J., Esch, M., Hoehfeld, A., Schloss, H., Zech, B.: Topgen - internet router-level topology generation based on technology constraints. In: Proceedings of the First International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools) (February 2008)Google Scholar
  25. 25.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 149–160. ACM Press, New York (2001)CrossRefGoogle Scholar
  26. 26.
    Tanin, E., Harwood, A., Samet, H.: Using a distributed quadtree index in peer-to-peer networks. VLDB 16(2), 165–178 (2007)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Ingo Scholtes
    • 1
  • Jean Botev
    • 1
  • Markus Esch
    • 2
  • Hermann Schloss
    • 1
  • Peter Sturm
    • 1
  1. 1.Systemsoftware and Distributed SystemsUniversity of TrierTrierGermany
  2. 2.Faculty of Sciences, Technology and CommunicationUniversity of LuxembourgLuxembourg-KirchbergLuxembourg

Personalised recommendations