Advertisement

Building a Text Classifier by a Keyword and Wikipedia Knowledge

  • Qiang Qiu
  • Yang Zhang
  • Junping Zhu
  • Wei Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5678)

Abstract

Traditional approach for building text classifiers usually require a lot of labeled documents, which are expensive to obtain. In this paper, we propose a new text classification approach based on a keyword and Wikipedia knowledge, so as to avoid labeling documents manually. Firstly, we retrieve a set of related documents about the keyword from Wikipedia. And then, with the help of related Wikipedia pages, more positive documents are extracted from the unlabeled documents. Finally, we train a text classifier with these positive documents and unlabeled documents. The experiment result on 20Newsgroup dataset show that the proposed approach performs very competitively compared with NB-SVM, a PU learner, and NB, a supervised learner.

Keywords

text classification keyword unlabeled document Wikipedia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on Computational learning theory (1998)Google Scholar
  2. 2.
    Ghani, R.: Combining labeled and unlabeled data for multiclass text categorization. In: International Conference on Machine Learning (2002)Google Scholar
  3. 3.
    Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Machine learning 39 (2000)Google Scholar
  4. 4.
    Liu, B., Lee, W., Yu, P., Li, X.: Partially Supervised Classification of Text Documents. In: International Conference on Machine Learning, pp. 387–394 (2002)Google Scholar
  5. 5.
    Li, X., Liu, B.: Learning to Classify Texts Using Positive and Unlabeled Data. In: International joint Conference on Artificial Intelligence, pp. 587–594 (2003)Google Scholar
  6. 6.
    Yu, H., Han, J., Chang, K.C.-C.: PEBL: Positive Example Based Learning for Web Page Classification Using SVM. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 239–248 (2002)Google Scholar
  7. 7.
    Fung, G.P.C., Yu, J.X., Lu, H., Yu, P.S.: Text Classification without Negative Examples. Proc. 21st Int’l Conf. Data Engineering (2005)Google Scholar
  8. 8.
    Yu, H., Han, J.: PEBL: Web Page Classification without Negative Examples. IEEE Trans. Knowledge and Data Engineering (2004)Google Scholar
  9. 9.
    Li, X., Liu, B.: Learning from Positive and Unlabeled Examples with Different Data Distributions. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 218–229. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Fung, G.P.C., et al.: Text Classification without Negative Examples Revisit. IEEE Transactions on Knowledge and Data Engineering 18(1), 6–20 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, X., Liu, B., Ng, S.-K.: Learning to Classify Documents with Only a Small Positive Training Set. In: The European Conference on Machine Learning, pp. 201–213 (2007)Google Scholar
  12. 12.
    McCallum, A., Nigam, K.: Text classification by bootstrapping with keywords, EM and shrinkage. In: ACL Workshop on Unsupervised Learning in Natural Language Processing (1999)Google Scholar
  13. 13.
    Liu, B., Li, X., Lee, W.S., Yu, P.S.: Text Classification by Labeling Words. In: Proc. 19th National Conference on Artificial Intelligence (2004)Google Scholar
  14. 14.
    Ko, Y., Seo, J.: Text classification from unlabeled documents with bootstrapping and feature projection techniques. Information Processing and Management (2009)Google Scholar
  15. 15.
    Qiu, Q., Zhang, Y., Zhu, J.: Build a text classifier by a keyword and unlabeled documents. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (2009)Google Scholar
  16. 16.
    Wang., P., Hu, J., Zeng, H.J., Chen, Z.: Using Wikipedia knowledge to improve text classification. In: Knowledge information System (2008)Google Scholar
  17. 17.
    Wang., P., Hu, J., Zeng, H.J., Chen, L.: Improving Text Classification By Using Encyclopedia Knowledge. In: IEEE International Conference on Data Mining (2007)Google Scholar
  18. 18.
    Medelyan, O., Milne, D.: Augmenting domain-specific thesauri with knowledge from Wikipedia. In: Proceedings of the NZ Computer Science Research Student Conference, Christchurch, NZ (2008)Google Scholar
  19. 19.
    Milne, D., Medelyan, O., Witten, I.H.: Mining domain-specific thesauri from Wikipedia: A case study. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (2006)Google Scholar
  20. 20.
    Barbara, D., Domeniconi, C., Kang, N.: Mining Relevant Text from Unlabeled Documents. In: Proceedings of the Third IEEE International Conference on Data Mining (2003)Google Scholar
  21. 21.
    McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification. In: AAAI 1998 workshop on learning for text categorization (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qiang Qiu
    • 1
  • Yang Zhang
    • 1
  • Junping Zhu
    • 1
  • Wei Qu
    • 1
  1. 1.College of Information EngineeringNorthwest A&F UniversityYangling

Personalised recommendations