Multi-auction Approach for Solving Task Allocation Problem

  • Chi-Kong Chan
  • Ho-Fung Leung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4078)


Request for Proposal (RFP) problem is a type of task allocation problem where task managers need to recruit service provider agents to handle complex tasks composed of multiple sub-tasks, with the objective being to assign each sub-task to a capable agent while keeping the cost as low as possible. Most existing approaches either involve centralized algorithms or require each agent’s cost for doing each sub-task to be known publicly beforehand, or attempt to force the agents to disclose such information by means of truth-telling mechanism, which is not practical in many problems where such information is sensitive and private. In this paper, we present an efficient multi-auction based mechanism that can produce near-optimal solutions without violating the privacy of the participating agents. By including an extra verification step after each bid, we can guarantee convergence to a solution while achieving optimal results in over 97% of the times in a series of experiment.


Reservation Price Task Allocation Task Manager Total Payment English Auction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  2. 2.
    Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. Journal of Finance 16, 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Clarke, E.H.: Multipart Pricing of Public Goods. Public Choice 11, 11–33 (1971)CrossRefGoogle Scholar
  4. 4.
    Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Czumaj, A., Ronen, A.: On The Expected Payment of Mechanisms for Task Allocation. In: Proceedings of The Twenty-third Annual ACM Symposium on Principles of Distributed Computing, pp. 252–253 (2004)Google Scholar
  6. 6.
    Cherkassky, B.V., Goldberg, A.V., Martin, P., Setubal, J.C., Stolfi, J.: Augment or Push? A Computational Study of Bipartite Matching and Unit Capacity Maximum Flow Algorithms. ACM Journal of Experimental Algorithmics 3(8) (1998)Google Scholar
  7. 7.
    Kraus, S., Shehory, O., Taase, G.: Coalition Formation with Uncertain Heterogeneous Information. In: Proceedings of 2nd International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1–8 (2003)Google Scholar
  8. 8.
    Kraus, S., Shehory, O., Taase, G.: The Advantages of Compromising in Coalition Formation with Incomplete Information. In: Proceedings of 3rd International Conference on Autonomous Agents and Multi-Agent Systems, pp. 588–595 (2004)Google Scholar
  9. 9.
    FIPA Iterated Contract Net Interaction Protocol Specification,
  10. 10.
    Zhang, H.-J., Li, Q.-H., Ruan, Y.-L.: Resource Co-allocation Via Agent-based Coalition Formation in Computational Grids. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1936–1940 (2003)Google Scholar
  11. 11.
    Nisan, N.: Algorithms for Selfish Agents: Mechanism Design for Distributed Computation. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 1–17. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Issac, M., Salmon, T.C., Zillante, A.: A Theory of Jump Bidding in Ascending Auctions, Game Theory and Information 0404002, EconWPA (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chi-Kong Chan
    • 1
  • Ho-Fung Leung
    • 1
  1. 1.The Chinese University of Hong KongShatinHong Kong

Personalised recommendations