Advertisement

Blockcipher-Based Hashing Revisited

  • Martijn Stam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5665)

Abstract

We revisit the rate-1 blockcipher based hash functions as first studied by Preneel, Govaerts and Vandewalle (Crypto’93) and later extensively analysed by Black, Rogaway and Shrimpton (Crypto’02). We analyse a further generalization where any pre- and postprocessing is considered. This leads to a clearer understanding of the current classification of rate-1 blockcipher based schemes as introduced by Preneel et al. and refined by Black et al. In addition, we also gain insight in chopped, overloaded and supercharged compression functions. In the latter category we propose two compression functions based on a single call to a blockcipher whose collision resistance exceeds the birthday bound on the cipher’s blocklength.

Keywords

Hash Function Block Cipher Compression Function Message Block Single Call 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: Rox. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bernstein, D.J.: Cubehash specification (2.b.1). Submission to NIST (2008)Google Scholar
  3. 3.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: Ecrypt Hash Workshop (2007)Google Scholar
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Duo, L., Li, C.: Improved collision and preimage resistance bounds on PGV schemes. IACR’s ePrint Archive, Report 2006/462 (2006), http://eprint.iacr.org/2006/462.pdf
  8. 8.
    Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of iterated hash functions based on block ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl hash functions. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lucks, S.: A collision-resistant rate-1 double-block-length hash function. In: Symmetric Cryptography. Dagstuhl Seminar Proceedings, IBFI, Number 07021 (2007)Google Scholar
  11. 11.
    Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryptographic algorithms. IBM Technical Disclosure Bulletin 27(10a), 5658–5659 (1985)Google Scholar
  12. 12.
    Menezes, A., van Oorschot, P., Vanstone, S.: CRC-Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  13. 13.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  14. 14.
    Miyaguchi, S., Iwata, M., Ohta, K.: New 128-bit hash function. In: Proceedings 4th International Joint Workshop on Computer Communications, pp. 279–288 (1989)Google Scholar
  15. 15.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Stam, M.: Blockcipher based hashing revisited. IACR’s ePrint Archive, Report 2008/071 (2008), http://eprint.iacr.org/2008/071.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martijn Stam
    • 1
  1. 1.LACAL, EPFLSwitzerland

Personalised recommendations