The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl

  • Florian Mendel
  • Christian Rechberger
  • Martin Schläffer
  • Søren S. Thomsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5665)

Abstract

In this work, we propose the rebound attack, a new tool for the cryptanalysis of hash functions. The idea of the rebound attack is to use the available degrees of freedom in a collision attack to efficiently bypass the low probability parts of a differential trail. The rebound attack consists of an inbound phase with a match-in-the-middle part to exploit the available degrees of freedom, and a subsequent probabilistic outbound phase. Especially on AES based hash functions, the rebound attack leads to new attacks for a surprisingly high number of rounds.

We use the rebound attack to construct collisions for 4.5 rounds of the 512-bit hash function Whirlpool with a complexity of 2120 compression function evaluations and negligible memory requirements. The attack can be extended to a near-collision on 7.5 rounds of the compression function of Whirlpool and 8.5 rounds of the similar hash function Maelstrom. Additionally, we apply the rebound attack to the SHA-3 submission Grøstl, which leads to an attack on 6 rounds of the Grøstl-256 compression function with a complexity of 2120 and memory requirements of about 264.

Keywords

Whirlpool Grøstl Maelstrom hash function collision attack near-collision 

References

  1. 1.
    Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function. Submitted to NESSIE (September 2000) (Revised May 2003), http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (2008/12/11)
  2. 2.
    De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC 2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    De Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Daemen, J., Rijmen, V.: The Design of Rijndael. In: Information Security and Cryptography. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Filho, D.G., Barreto, P.S.L.M., Rijmen, V.: The Maelstrom-0 hash function. In: SBSeg 2006 (2006)Google Scholar
  8. 8.
    Fouque, P.-A., Stern, J., Zimmer, S.: Cryptanalysis of Tweaked Versions of SMASH and Reparation. In: SAC 2008. LNCS, vol. 5381. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate (2008), http://www.groestl.info
  10. 10.
    Keliher, L., Sui, J.: Exact Maximum Expected Differential and Linear Probability for Two-Round Advanced Encryption Standard. Information Security, IET 1(2), 53–57 (2007)CrossRefGoogle Scholar
  11. 11.
    Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up collision search for byte-oriented hash functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 164–181. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Knudsen, L.R.: Non-random properties of reduced-round Whirlpool. NESSIE public report, NES/DOC/UIB/WP5/017/1 (2002)Google Scholar
  14. 14.
    Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Mendel, F., Rechberger, C., Schläffer, M.: Cryptanalysis of Twister. In: Abdalla, M., Pointcheval, D. (eds.) ACNS 2009. LNCS, vol. 5536. Springer, Heidelberg (to appear, 2009)Google Scholar
  17. 17.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997), http://www.cacr.math.uwaterloo.ca/hac/MATHGoogle Scholar
  18. 18.
    National Institute of Standards and Technology. FIPS PUB 197, Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197, U.S. Department of Commerce (November 2001)Google Scholar
  19. 19.
    National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (November 2007), http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (2008/10/17)
  20. 20.
    NESSIE. New European Schemes for Signatures, Integrity, and Encryption. IST-1999-12324, http://cryptonessie.org/
  21. 21.
    Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search? Application to DES (extended summary). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 429–434. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  23. 23.
    Rijmen, V., Preneel, B.: Improved Characteristics for Differential Cryptanalysis of Hash Functions Based on Block Ciphers. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 242–248. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  24. 24.
    Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Mendel
    • 1
  • Christian Rechberger
    • 1
  • Martin Schläffer
    • 1
  • Søren S. Thomsen
    • 2
  1. 1.Institute for Applied Information Processing and Communications (IAIK)Graz University of TechnologyGrazAustria
  2. 2.Department of MathematicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations