Quantum Key Distribution


The key management which is associated with the key generation, key distribution, key storage, and key updating has become an important issue in the private communication. This chapter introduces a novel approach of generating and distributing key-pair via quantum ways. The aim is to illustrate how to obtain secure keys via quantum key distribution (QKD) techniques. Four modules, i.e., the quantum coding, quantum transmission, eavesdropping detection and key distillation, of a QKD procedure are described. In addition, a security model for the QKD is established.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bennett C H, Brassard G (1984) An update on quantum cryptography. Advances in Cryptology-Proceedings of Crypto 84, Barbara, Springer, pp 475–480Google Scholar
  2. [2]
    Bennett C H (1992) Quantum cryptography using any two non-orthogonal states. Physical Review Letters, 68: 3121–3124zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Ekert A K (1991) Quantum cryptography bases on Bell’s theorem. Physical Review Letters, 67: 661–664zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Bennett C H, Bessette F, Brassard G, et al (1992) Experimental quantum cryptography. Journal of Cryptology, 5: 3–28zbMATHCrossRefGoogle Scholar
  5. [5]
    Goldenberg L, Vaidman L (1995) Quantum cryptography based on orthogonal states. Physical Review Letters, 75: 1239–1243zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Koashi M, Imoto N (1997) Quantum cryptography based on split transmission of one-bit information in two steps. Physical Review Letters, 79: 2383–2386zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Bechmann-Pasquinucci H, Peres A (2000) Quantum cryptography with 3-state systems. Physical Review Letters, 85: 3313–3316MathSciNetCrossRefGoogle Scholar
  8. [8]
    Bruß D (1998) Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters, 87: 3018–3021CrossRefGoogle Scholar
  9. [9]
    Zeng G H, Wang Z Y, Zhu H W (2000) Quantum key distribution scheme with 100% efficiency. The 5th interaction conference on quantum communication, measurement and computing, Capri, 3-8 July 2000, pp 2–8Google Scholar
  10. [10]
    Gisin N, Ribordy G, Tittel W, et al (2002) Quantum cryptography. Reviews of Modern Physics, 74: 145–195CrossRefGoogle Scholar
  11. [11]
    Brassard G, Salvail L (1994) Secret-key reconciliation by public discussion. Advances in Cryptology: Eurocrypt 93, Lofthus, Norway, May 23-27, 1993. Helleseth T (ed) Lecture Notes in Computer Science (LNCS). Springer, Heidelberg, pp 441-423Google Scholar
  12. [12]
    Yamazaki K, Sugimoto T (2000) On secret key reconciliation protocol. Proceedings IEEE International Symposium on Information Theory and its Applications, Honolulu. 2000Google Scholar
  13. [13]
    Sugimoto T, Yamazaki K (2000) A study on secret key reconciliation protocol cascade. IEICE Transactions on Fundamentals, E83-A(10): 1987–1991Google Scholar
  14. [14]
    Assche G V, Cardinal J, Cerf N J (2004) Reconciliation of a quantum distributed gaussian key. IEEE Transactions on Information Theory, 50(2): 394–400CrossRefGoogle Scholar
  15. [15]
    Bennett C H, Brassard G, Crepeau C, et al (1995) Generalized privacy amplification. IEEE Transactions on Information Theory, 41: 1915–1938zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Deutsch D, Ekert A, Jozsa R, et al (1996) Quantum privacy amplification and the security of quantum cryptography over noisy channels. Physical Review Letters, 77: 2818–2821CrossRefGoogle Scholar
  17. [17]
    Lütkenhaus N (1996) Security against eavesdropping in quantum cryptography. Physical Review A, 54: 97–112CrossRefGoogle Scholar
  18. [18]
    Lo H K, Chau H F (1999) Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283: 2050–2057CrossRefGoogle Scholar
  19. [19]
    Mayers D (2001) Unconditional security in quantum cryptography. Journal of the ACM, 48: 351–406MathSciNetCrossRefGoogle Scholar
  20. [20]
    Bennett C H, Brassard G, Mermin N D (1992) Quantum cryptography without Bell’s theorem. Physical Review Letters, 68: 557–559zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Boström K, Felbinger T (2004) Deterministic secure direct communication using entanglement. Physical Review Letters, 89: 1–4Google Scholar
  22. [22]
    Wójcik A (2004) Eavesdropping on the “Ping-pong” quantum communication protocol. Physical Review Letters, 90: 1–4Google Scholar
  23. [23]
    Hoffmann H, Bostroem K, Felbinger T (2005) Comment on “Secure direct communication with a quantum one-time pad”. Physical Review A, 72: 016301CrossRefGoogle Scholar
  24. [24]
    Cai Q Y (2006) Eavesdropping on the two-way quantum communication protocols with invisible photons. Physics Letters A, 351: 23–25zbMATHCrossRefGoogle Scholar
  25. [25]
    Wegman M N, Carter J L (1981) New hash function and their use in authentication and set equality. Journal of Computer and System science, 22: 265–287zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    Cerf N J, Lévy M, Assche G V (2001) Quantum distribution of gaussian keys using squeezed states. Physical Review A, 63: 052311CrossRefGoogle Scholar
  27. [27]
    Grosshans F, Grangier P (2002) Continuous variable quantum cryptography using coherent states. Physical Review Letters, 88: 1–4CrossRefGoogle Scholar
  28. [28]
    Buttler W T, Lamoreaux S K, Torgerson J R, et al (2003) Fast, efficient error reconciliation for quantum cryptography. Physical Review A, 67(5): 052303CrossRefGoogle Scholar
  29. [29]
    Cardinal J, Assche G V (2003) Construction of a shared secret key using continuous variables. Proceedings of IEEE Information Theory Workshop (ITW), Paris, 2003Google Scholar
  30. [30]
    Assche G V (2006) Quantum cryptography and secret-key distillation using quantum cryptography. Cambridge University Press, LondonCrossRefGoogle Scholar
  31. [31]
    Zeng G H (2006) Quantum cryptology. Science Press, BeijingGoogle Scholar
  32. [32]
    Csiszar I, Körner J (1978) Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3): 339–348zbMATHCrossRefGoogle Scholar
  33. [33]
    Maurer U M (1993) Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory, 39(3): 733–742zbMATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    Brassard G, Lütkenhaus N, Mor T, et al (2000) Limitations on practical quantum cryptography. Physical Review Letters, 85(6): 1330–1333CrossRefGoogle Scholar
  35. [35]
    Scarani V, Acín A, Ribordy G, et al (2004) Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Physical Review Letters, 92: 1–4Google Scholar
  36. [36]
    Hwang W Y (2003) Quantum key distribution with high Loss: toward global secure communication. Physical Review Letters, 91: 1–4CrossRefGoogle Scholar
  37. [37]
    Wang X B (2005) Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Physical Review Letters, 94: 1–4Google Scholar
  38. [38]
    Yuan Z L, Sharpe A W, Shields A J (2007) Unconditionally secure one-way quantum key distribution using decoy pulses. Applied Physics Letters, 90: 011118CrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations