Approaches to Image Abstraction for Photorealistic Depictions of Virtual 3D Models

Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In our contribution, we present approaches of automatic image abstraction, applied to images and image sequences derived as views of virtual 3D city models and landscape models. We first discuss the requirements of cartography-specific visualization based on the virtual globe metaphor as well as the specific characteristics and deficiencies of visualization based on photorealism. We introduce a concept that extends the classical visualization pipeline by cartography-specific functionality, object-space and image-space abstraction, which also represent the two principle ways for implementing cartographic visualization systems. Abstraction provides the prerequisites to visually communicate uncertainty, to simplify and filter detailed elements, and to clearly encode displayed information of complex geospatial information. In addition, it offers many degrees of freedom for artistic and stylistic design of cartographic products. Furthermore, we outline general working principles and implementation of an automatic image-space abstraction technique we developed that creates high-quality, simplified, stylistic illustrations from color images, videos, and 3D renderings.

Keywords

Non-photorealistic rendering image abstraction virtual 3D city models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the German Research Foundation (DFG), grant DO 697/5-1.

References

  1. Buchholz H (2006) Real-Time Visualization of 3D City Models. PhD Thesis. Universität PotsdamGoogle Scholar
  2. Cecconi A (2003) Integration of Cartographic Generalization and Multi-Scale Databases for Enhanced Web Mapping. PhD Thesis. University of ZürichGoogle Scholar
  3. Däßler R (2002) Visuelle Kommunikation mit Karten. In: Arthur Engelbert, Manja Herlt (ed) Updates – visuelle Medienkompetenz. Königshausen & NeumannGoogle Scholar
  4. Döllner J, Hagedorn B (2007) Integrating Urban GIS, CAD, and BIM Data By Service-Based Virtual 3D City-Models. 26th Urban Data Management SymposiumGoogle Scholar
  5. Egenhofer M, Mark D (1995). Naive Geography. COSIT 95, Semmering, Austria, In Frank A, Kuhn W (ed) Lecture Notes in Computer Science, Vol 988, Springer, pp 1–15Google Scholar
  6. Frueh C, Sammon R, Zakhor A (2004) Automated Texture Mapping of 3D City Models with Oblique Aerial Imagery. Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission, 396–403, IEEE Computer SocietyGoogle Scholar
  7. Glander T, Döllner J (2007a) Techniques for Generalizing Building Geometry of Complex Virtual 3D City Models. 2nd International Workshop on 3D Geo-Information: Requirements, Acquisition, Modelling, Analysis, VisualisationGoogle Scholar
  8. Glander T, Trapp M, Döllner J (2007b) A Concept of Effective Landmark Depiction in Geovirtual 3D Environments by View-Dependent Deformation. 4th International Symposium on LBS and TelecartographyGoogle Scholar
  9. Gröger G, Kolbe TH, Czerwinski A (2007) City Geography Markup Language (CityGML). OGC Best Practices Document, Version 0.4.0, OGC Doc. No. 07-062. Open Geospatial ConsortiumGoogle Scholar
  10. Hake G, Grünreich D, Meng L (2002) Kartographie. 8 Ed Walter de Gruyter, Berlin, New YorkGoogle Scholar
  11. Jobst M (2008) Ein semiotisches Modell für die kartografische Kommunikation mit 3D. PhD Thesis. Technische Universität Wien. http://media.obvsg.at/AC05037648
  12. Kang H, Lee S, Chui CK (2007) Coherent Line Drawing. In Proc ACM NPAR, pp 43–50Google Scholar
  13. Kolbe TH, Gröger G, Plümer L (2005) CityGML – Interoperable Access to 3D City Models. Proceedings of the First International Symposium on Geo-Information for Disaster Management. Delft, NetherlandsGoogle Scholar
  14. Kyprianidis JE, Döllner J (2008) Image Abstraction by Structure Adaptive Filtering. In Proc. EG UK Theory and Practice of Computer Graphics, pp 51–58Google Scholar
  15. Kyprianidis JE, Döllner J (2009) Real-time Image Abstraction by Directed Filtering. In ShaderX7 – Advanced Rendering Techniques, Charles River MediaGoogle Scholar
  16. Lorenz H, Döllner J (2006) Towards Automating the Generation of Facade Textures of Virtual City Models. ISPRS Commission II, WG II/5 Workshop, Vienna, www.hpi3d.de/publications
  17. Maass S, Trapp M, Kyprianidis JE, Döllner J, Eichhorn M, Pokorski R, Bäuerlein J, v. Hesberg H (2008) Techniques For The Interactive Exploration Of High-Detail 3D Building Reconstruction Using The Example Of Roman Cologne. Proceedings of 14th International Conference on Virtual Systems and Multimedia (VSMM 2008), pp 223–229Google Scholar
  18. Marr D, Hildreth RC (1980) Theory of edge detection. In Proc. Royal Society London 207:187–217CrossRefGoogle Scholar
  19. Nienhaus M, Döllner J (2003) Edge-Enhancement – An Algorithm for Real-Time Non-Photorealistic Rendering. International Winter School of Computer Graphics, Journal of WSCG, 11(2):346–353Google Scholar
  20. Paris S, Kornprobst P, Tumblin J, Durand F (2007) A gentle introduction to bilateral filtering and its applications. In ACM SIGGRAPH coursesGoogle Scholar
  21. Pham TQ, van Vliet LJ (2005) Separable bilateral filtering for fast video preprocessing. In IEEE International Conference on Multimedia and ExpoGoogle Scholar
  22. Wellmann M (2008) Automatische Generierung graphischer Oberflächendetails für Bodenflächen in virtuellen 3D-Stadtmodellen. Master Thesis. Universität PotsdamGoogle Scholar
  23. Winnemöller H, Olsen SC, Gooch B (2006) Real-time video abstraction. ACM Transactions on Graphics 25(3):1221–1226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Hasso-Plattner-InstitutUniversity of PotsdamPotsdamGermany

Personalised recommendations