Plastics from Bacteria pp 187-211

Part of the Microbiology Monographs book series (MICROMONO, volume 14) | Cite as

Metabolic Engineering of Plants for the Synthesis of Polyhydroxyalkanaotes

Chapter

Abstract

Synthesis of polyhydroxyalkanoates (PHAs) in crop plants is viewed as an attractive approach for the production of this family of biodegradable plastics in large quantities and at low costs. Synthesis of PHAs containing various monomers has so far been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modified to achieve this, including the isoprenoid pathway, the fatty acid biosynthetic pathway, and the fatty acid β-oxidation pathway. PHA synthesis has been demonstrated in a number of plants, including monocots and dicots, and up to 40% PHA per gram dry weight has been demonstrated in Arabidopsis thaliana. Despite some successes, production of PHAs in crop plants remains a challenging project. PHA synthesis at a high level in vegetative tissues, such as leaves, is associated with chlorosis and reduced growth in some plants. The challenges for the future are to succeed in the synthesis of PHA copolymer with a narrow range of monomer composition, at levels that do not compromise plant productivity, and in creating methods for efficient and economical extraction of polymer from plants. These goals will undoubtedly require a deeper understanding of plant biochemical pathways as well as advances in biorefinery.

References

  1. Anderson DJ, Gnanasambandam A, Williams E, O’Shea MG, Nielsen LK, Brumbley SM (2008) Production of polyhydroxyalkanoate copolymers in sugarcane. Paper presented at the international symposium on biological polyesters conference 2008, Sky City Convention Centre, Auckland, 23–26 Nov 2008Google Scholar
  2. Arai Y, Nakashita H, Doi Y, Yamaguchi I (2001) Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. Plant Biotechnol 18:289–293Google Scholar
  3. Arai Y, Nakashita H, Suzuki Y, Kobayashi Y, Shimizu T, Yasuda M, Doi Y, Yamaguchi I (2002) Synthesis of a novel class of polyhydroxyalkanoates in Arabidopsis peroxisomes, and their use in monitoring short-chain-length intermediates of β-oxidation. Plant Cell Physiol 43:555–562CrossRefPubMedGoogle Scholar
  4. Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol 45:1176–1184CrossRefPubMedGoogle Scholar
  5. Bogdawa H, Delessert S, Poirier Y (2005) Analysis of the contribution of the beta-oxidation auxiliary enzymes in the degradation of the dietary conjugated linoleic acid 9-cis-11-trans-octadecadienoic acid in the peroxisomes of Saccharomyces cerevisiae. Biochim Biophys Acta 1735:204–213PubMedGoogle Scholar
  6. Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845CrossRefPubMedGoogle Scholar
  7. Bohmert K, Balbo I, Steinbuchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the beta-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290CrossRefPubMedGoogle Scholar
  8. Brumbley SM, Snyman SJ, Gnanasambandam A, Joyce P, Hermann SR, da Silva JAG, McQualter RB, Wang M-L, Egan B, Patterson AH, Albert HH, Moore PH (2008) Sugarcane. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants: sugar, tuber and fiber crops. Blackwell, Oxford, pp 1–58Google Scholar
  9. De Koning G (1995) Physical properties of bacterial poly((R)-3-hydroxyalkanoates). Can J Microbiol 41:303–309CrossRefGoogle Scholar
  10. de Oliveira VC, Maeda I, Delessert S, Poirier Y (2004) Increasing the carbon flux toward synthesis of short-chain-length–medium-chain-length polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae through modification of the beta-oxidation cycle. Appl Environ Microbiol 70:5685–5687CrossRefPubMedGoogle Scholar
  11. Eccleston VS, Ohlrogge JB (1998) Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 10:613–621CrossRefPubMedGoogle Scholar
  12. Eccleston VS, Cranmer AM, Voelker TA, Ohlrogge JB (1996) Medium-chain fatty acid biosynthesis and utilization in Brassica napus plants expressing lauroyl-acyl carrier protein thioesterase. Planta 198:46–53CrossRefGoogle Scholar
  13. Fatland BL, Nikolau BJ, Wurtele ES (2005) Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell 17:182–203CrossRefPubMedGoogle Scholar
  14. Fukui T, Doi Y (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830PubMedGoogle Scholar
  15. Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673PubMedGoogle Scholar
  16. Goepfert S, Vidoudez C, Rezzonico E, Hiltunen JK, Poirier Y (2005) Molecular identification and characterization of the Arabidopsis Delta(3, 5), Delta (2, 4)-dienoyl-coenzyme A isomerase, a peroxisomal enzyme participating in the beta-oxidation cycle of unsaturated fatty acids. Plant Physiol 138:1947–1956CrossRefPubMedGoogle Scholar
  17. Goepfert S, Hiltunen JK, Poirier Y (2006) Identification and functional characterization of a monofunctional peroxisomal enoyl-CoA hydratase 2 that participates in the degradation of even-cis unsaturated fatty acids in Arabidopsis thaliana. J Biol Chem 281:35894–35903CrossRefPubMedGoogle Scholar
  18. Goepfert S, Vidoudez C, Tellgren-Roth C, Delessert S, Hiltunen JK, Poirier Y (2008) Peroxisomal Delta(3),Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes. Plant J 56:728–742CrossRefPubMedGoogle Scholar
  19. Hahn JJ, Eschenlauer AC, Sleytr UB, Somers DA, Srienc F (1999) Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol Prog 15:1053–1057CrossRefPubMedGoogle Scholar
  20. Hamberg M, Sanz A, Castresana C (1999) Alpha-oxidation of fatty acids in higher plants – identification of a pathogen-inducible oxygenase (PIOX) as an alpha-dioxygenase and biosynthesis of 2-hydroperoxylinolenic acid. J Biol Chem 274:24503–24513CrossRefPubMedGoogle Scholar
  21. Hooks MA, Fleming Y, Larson TR, Graham IA (1999) No Induction of beta-oxidation in leaves of Arabidopsis that over-produce lauric acid. Planta 207:385–392CrossRefPubMedGoogle Scholar
  22. Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE, Gruys KJ (1999) Poly(β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta 209:547–550CrossRefPubMedGoogle Scholar
  23. Huijberts GNM, Eggink G, Dewaard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544PubMedGoogle Scholar
  24. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432CrossRefPubMedGoogle Scholar
  25. John ME (1997) Cotton crop improvement through genetic engineering. Crit Rev Biotechnol 17:185–208CrossRefGoogle Scholar
  26. John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci U S A 93:12768–12773CrossRefPubMedGoogle Scholar
  27. Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou JT, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399–409CrossRefPubMedGoogle Scholar
  28. Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2005) A novel thiolase-reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotechnol J 3:435–447CrossRefPubMedGoogle Scholar
  29. Kourtz L, Dillon K, Daughtry S, Peoples OP, Snell KD (2007) Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Res 16:759–769CrossRefPubMedGoogle Scholar
  30. Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899PubMedGoogle Scholar
  31. Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S, Koop H-U (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471CrossRefPubMedGoogle Scholar
  32. Maeda I, Delessert S, Hasegawa S, Seto Y, Zuber S, Poirier Y (2006) The peroxisomal acyl-CoA thioesterase pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids. J Biol Chem 281:11729–11735CrossRefPubMedGoogle Scholar
  33. Marchesini S, Poirier Y (2003) Futile cycling of intermediates of fatty acid biosynthesis toward peroxisomal beta-oxidation in Saccharomyces cerevisiae. J Biol Chem 278:32596–32601CrossRefPubMedGoogle Scholar
  34. Matsumoto K, Nagao R, Murata T, Arai Y, Kichise T, Nakashita H, Taguchi S, Shimada H, Doi Y (2005) Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in the transgenic Arabidopsis thaliana by the in vitro evolved highly active mutants of polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae. Biomacromolecules 6:2126–2130CrossRefPubMedGoogle Scholar
  35. Matsumoto K, Arai Y, Nagao R, Murata T, Takase K, Nakashita H, Taguchi S, Shimada H, Doi Y (2006) Synthesis of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers in peroxisome of the transgenic Arabidopsis thaliana harboring the PHA synthase gene from Pseudomonas sp. 61–3. J Polym Environ 14:369–374CrossRefGoogle Scholar
  36. Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly (3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:571–576PubMedGoogle Scholar
  37. Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbuchel A, Poirier Y (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid beta-oxidation. Proc Natl Acad Sci U S A 95:13397–13402CrossRefPubMedGoogle Scholar
  38. Mittendorf V, Bongcam V, Allenbach L, Coullerez G, Martini N, Poirier Y (1999) Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation. Plant J 20:45–55CrossRefPubMedGoogle Scholar
  39. Moire L, Rezzonico E, Goepfert S, Poirier Y (2004) Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants(1[w]). Plant Physiol 134:432–442CrossRefPubMedGoogle Scholar
  40. Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 63:870–874CrossRefGoogle Scholar
  41. Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691CrossRefPubMedGoogle Scholar
  42. Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic-pathway to the plastids of Arabidopsis thaliana results in high-levels of polymer accumulation. Proc Natl Acad Sci U S A 91:12760–12764CrossRefPubMedGoogle Scholar
  43. Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6:580–586CrossRefPubMedGoogle Scholar
  44. Omidvar V, Akmar ASN, Marziah M, Maheran AA (2008) A transient assay to evaluate the expression of polyhydroxybutyrate genes regulated by oil palm mesocarp-specific promoter. Plant Cell Rep 27:1451–1459CrossRefPubMedGoogle Scholar
  45. Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM (2007) Polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnol J 5:162–172CrossRefPubMedGoogle Scholar
  46. Poirier Y (1999) Production of new polymeric compounds in plants. Curr Opin Biotechnol 10:181–185CrossRefPubMedGoogle Scholar
  47. Poirier Y (2001) Production of polyesters in transgenic plants. Adv Biochem Eng Biotechnol 71:209–240PubMedGoogle Scholar
  48. Poirier Y (2002) Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog Lipid Res 41:131–155CrossRefPubMedGoogle Scholar
  49. Poirier Y, Gruys KJ (2001) Production of PHAs in transgenic plants. In: Doi Y, Steinbüchel A (eds) Biopolyesters. Wiley-VCH, Weinheim, pp 401–435Google Scholar
  50. Poirier Y, van Beilen JB (2008) Production of renewable polymers from crop plants. Plant J 54:684–701CrossRefPubMedGoogle Scholar
  51. Poirier Y, Dennis D, Klomparens K, Nawrath C, Somerville C (1992a) Perspectives on the production of polyhydroxyalkanoates in plants. FEMS Microbiol Rev 103:237–246CrossRefGoogle Scholar
  52. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992b) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523CrossRefPubMedGoogle Scholar
  53. Poirier Y, Somerville C, Schechtman LA, Satkowski MM, Noda I (1995) Synthesis of high-molecular-weight poly([R]-(-)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant-cells. Int J Biol Macromol 17:7–12CrossRefPubMedGoogle Scholar
  54. Poirier Y, Ventre G, Caldelari D (1999) Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol 121:1359–1366CrossRefPubMedGoogle Scholar
  55. Purnell MP, Petrasovits LA, Nielsen LK, Brumbley SM (2007) Spatio-temporal characterisation of polyhydroxybutyrate accumulation in sugarcane. Plant Biotechnol J 5:173–184CrossRefPubMedGoogle Scholar
  56. Rehm BHA, Kruger N, Steinbuchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis - the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem 273:24044–24051CrossRefPubMedGoogle Scholar
  57. Reiser SE, Mitsky TA, Gruys KJ (2000) Characterization and cloning of an (R)-specific trans-2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli. Appl Microbiol Biotechnol 53:209–218CrossRefPubMedGoogle Scholar
  58. Robert J, Marchesini S, Delessert S, Poirier Y (2005) Analysis of the beta-oxidation of trans-unsaturated fatty acid in recombinant Saccharomyces cerevisiae expressing a peroxisomal PHA synthase reveals the involvement of a reductase-dependent pathway. Biochim Biophys Acta 1734:169–177PubMedGoogle Scholar
  59. Romano A, Vreugdenhil D, Jamar D, van der Plas LHW, de Roo G, Witholt B, Eggink G, Mooibroek H (2003) Evidence of medium-chain-length polyhydroxyoctanoate accumulation in transgenic potato lines expressing the Pseudomonas oleovorans Pha-C1 polymerase in the cytoplasm. Biochem Eng J 16:135–143CrossRefGoogle Scholar
  60. Romano A, Van der Plas LHW, Witholt B, Eggink G, Mooibroek H (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220:455–464CrossRefPubMedGoogle Scholar
  61. Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of beta-ketothiolase. Plant Physiol 138:1232–1246CrossRefPubMedGoogle Scholar
  62. Saruul P, Srienc F, Somers DA, Samac DA (2002) Production of a biodegradable plastic polymer, poly-beta-hydroxybutyrate, in transgenic alfalfa. Crop Sci 42:919–927CrossRefGoogle Scholar
  63. Schubert P, Steinbuchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for the synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847PubMedGoogle Scholar
  64. Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436PubMedGoogle Scholar
  65. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987PubMedGoogle Scholar
  66. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016CrossRefPubMedGoogle Scholar
  67. Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 6:663–678CrossRefPubMedGoogle Scholar
  68. Steinbuchel A, Fuchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427CrossRefPubMedGoogle Scholar
  69. Steinbuchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96CrossRefGoogle Scholar
  70. Steinbuchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542CrossRefPubMedGoogle Scholar
  71. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  72. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  73. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – a review. Biotechnol Adv 25:148–175CrossRefPubMedGoogle Scholar
  74. Suzuki Y, Kurano K, Arai Y, Nakashita H, Doi Y, Usami R, Horikoshi K, Yamaguchi I (2002) Enzyme inhibitors to increase poly-3-hydroxybutyrate production by transgenic tobacco. Biosci Biotechnol Biochem 66:2537–2542CrossRefPubMedGoogle Scholar
  75. Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (1999) Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol Lett 176:183–190CrossRefPubMedGoogle Scholar
  76. Tilbrook K, Gnanasambandam A, Schenk P, Brumbley SM (2008) Peroxisomal PHB production in plants. Paper presented at the international symposium on biological polyesters conference 2008, Sky City Convention Centre, Auckland, 23–26 Nov 2008Google Scholar
  77. Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–198CrossRefPubMedGoogle Scholar
  78. Wrobel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54CrossRefPubMedGoogle Scholar
  79. Wrobel-Kwiatkowska M, Zebrowski J, Starzycki M, Oszmianski J, Szopa J (2007) Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol Prog 23:269–277CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Département de Biologie Moléculaire Végétale, BiophoreUniversité de LausanneLausanneSwitzerland
  2. 2.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandIndooroopillyAustralia

Personalised recommendations