A New Spatial Hue Angle Metric for Perceptual Image Difference

  • Marius Pedersen
  • Jon Yngve Hardeberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5646)

Abstract

Color image difference metrics have been proposed to find differences between an original image and a modified version of it. One of these metrics is the hue angle algorithm proposed by Hong and Luo in 2002. This metric does not take into account the spatial properties of the human visual system, and could therefore miscalculate the difference between an original image and a modified version of it. Because of this we propose a new color image difference metrics based on the hue angle algorithm that takes into account the spatial properties of the human visual system. The proposed metric, which we have named SHAME (Spatial Hue Angle MEtric), have been subjected to extensive testing. The results show improvement in performance compared to the original metric proposed by Hong and Luo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CIE: Colorimetry. Technical Report 15 (2004)Google Scholar
  2. 2.
    Zhang, X., Wandell, B.: A spatial extension of CIELAB for digital color image reproduction. In: Soc. Inform. Display 96, San Diego, 731–734 (1996), http://white.stanford.edu/~brian/scielab/scielab.html
  3. 3.
    Hong, G., Luo, M.: Perceptually based colour difference for complex images. In: Chung, R., Rodrigues, A. (eds.) 9th Congress of the International Colour Association. Proceedings of SPIE, vol. 4421, pp. 618–621 (2002)Google Scholar
  4. 4.
    Pedersen, M., Hardeberg, J.Y.: Rank order and image difference metrics. In: CGIV 2008 Fourth European Conference on Color in Graphics, Imaging and Vision, Terrassa, Spain, IS&T, pp. 120–125 (June 2008)Google Scholar
  5. 5.
    Pedersen, M., Hardeberg, J.Y., Nussbaum, P.: Using gaze information to improve image difference metrics. In: Rogowitz, B., Pappas, T. (eds.) Human Vision and Electronic Imaging VIII (HVEI 2008), San Jose, USA. SPIE proceedings, vol. 6806. SPIE (January 2008)Google Scholar
  6. 6.
    Pedersen, M.: Importance of region-of-interest on image difference metrics. Master’s thesis, Gjøvik University College (2007)Google Scholar
  7. 7.
    Johnson, G.M., Fairchild, M.D.: Darwinism of color image difference models. In: The 9th Color Imaging Conference: Color Science and Engineering: Systems, Technologies, Applications, pp. 108–112 (2001)Google Scholar
  8. 8.
    Movshon, J.A., Kiorpes, L.: Analysis of the development of spatial sensitivity in monkey and human infants. J. Opt. Soc. Am. A 5, 2166–2172 (1988)CrossRefGoogle Scholar
  9. 9.
    Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J., Carli, M., Battisti, F.: Color image database for evaluation of image quality metrics. In: International Workshop on Multimedia Signal Processing, Cairns, Queensland, Australia (October 2008), http://www.ponomarenko.info/tid2008.htm
  10. 10.
    Dugay, F.: Perceptual evaluation of colour gamut mapping algorithms. Master thesis, Gjøvik University College and Grenoble Institute of Technology (2007)Google Scholar
  11. 11.
    Dugay, F., Farup, I., Hardeberg, J.Y.: Perceptual evaluation of colour gamut mapping algorithms. Color Research & Application 33(6), 470–476 (2008)CrossRefGoogle Scholar
  12. 12.
    Kendall, M.G., Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics: Classical inference and relationship, 5th edn., vol. 2. A Hodder Arnold Publication (1991)Google Scholar
  13. 13.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Processing Letters 9, 81–84 (2002)CrossRefGoogle Scholar
  15. 15.
    Hardeberg, J.Y., Bando, E., Pedersen, M.: Evaluating colour image difference metrics for gamut-mapped images. Coloration Technology 124(4), 243–253 (2008)CrossRefGoogle Scholar
  16. 16.
    Bonnier, N., Schmitt, F., Brettel, H., Berche, S.: Evaluation of spatial gamut mapping algorithms. In: 14th Color Imaging Conference. IS&T/SID, vol. 14, pp. 56–61 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marius Pedersen
    • 1
    • 2
  • Jon Yngve Hardeberg
    • 1
  1. 1.Gjøvik University CollegeGjøvikNorway
  2. 2.Océ Print Logic Technologies S.A.CréteilFrance

Personalised recommendations