Color Constancy Algorithm Selection Using CART

  • Simone Bianco
  • Gianluigi Ciocca
  • Claudio Cusano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5646)

Abstract

In this work, we investigate how illuminant estimation techniques can be improved taking into account intrinsic, low level properties of the images. We show how these properties can be used to drive, given a set of illuminant estimation algorithms, the selection of the best algorithm for a given image. The selection is made by a decision forest composed by several trees that vote for one of the illuminant estimation algorithm. The most voted algorithm is then applied to the input image. Experimental results on the widely used Ciurea and Funt dataset demonstrate the accuracy of our approach in comparison to other algorithms in the state of the art.

Keywords

Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Funt, B., Barnard, K., Martin, L.: Is machine colour constancy good enough? In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 445–459. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Hordely, S.D.: Scene illuminant estimation: Past, present, and future. Color Research & Application 31(4), 303–314 (2006)CrossRefGoogle Scholar
  3. 3.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based Color Constancy’. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Buchsbaum, G.: A spatial processor model for object color perception. Journal of Franklin Institute 310, 1–26 (1980)CrossRefGoogle Scholar
  5. 5.
    Cardei, V., Funt, B., Barndard, K.: White point estimation for uncalibrated images. In: Proc. IS&T/SID 7th Color Imaging Conference, pp. 97–100 (1999)Google Scholar
  6. 6.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks/Cole (1984)Google Scholar
  7. 7.
    Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)MATHGoogle Scholar
  8. 8.
    Schettini, R., Ciocca, G., Zuffi, S.: Indexing and retrieval in color image databases. Color Imaging Science: Exploiting Digital Media, 183–211 (2002)Google Scholar
  9. 9.
    Antani, S., Kasturi, R., Jain, R.: Survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video. Pattern recognition 35, 945–965 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Eakins, J.P.: Towards intelligent image retrieval. Pattern Recognition 35, 3–14 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Sikora, T.: The MPEG-7 visual standard for content description - An overview. IEEE Transaction on circuits and system for video technology 11(6), 696–702 (2001)CrossRefGoogle Scholar
  12. 12.
    Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  13. 13.
    Gong, Y., Chuan, C.H., Xiaoyi, G.: Image indexing and retrieval using color histograms. Multimedia Tools and Applications 2, 133–156 (1996)Google Scholar
  14. 14.
    Idris, F., Panchanathan, S.: Storage and retrieval of compressed images using wavelet vector quantization. Journal of Visual Languages and Computing 8, 289–301 (1997)CrossRefGoogle Scholar
  15. 15.
    Scheunders, P., Liven, S., Van de Wouwer, G., Vautrot, P., Van Dyck, D.: Wavelet-based texture analysis. International Journal Computer Science and Information management 1(2), 22–34 (1997)Google Scholar
  16. 16.
    Mojsilovic, A., Rackov, D., Popovic, M.: On the selection of an optimal wavelet basis for texture characterization. IEEE Transaction on Image Processing 9(12), 2043–2050 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Stricker, M.A., Orengo, M.: Similarity of color images. In: Proc. SPIE Storage and Retrieval for Image and Video Databases III Conference, pp. 381–392 (1995)Google Scholar
  18. 18.
    Gasparini, F., Schettini, R.: Color balancing of digital photos using simple image statistics. Pattern Recognition 37(6), 1201–1217 (2004)CrossRefGoogle Scholar
  19. 19.
    Ciurea, F., Funt, B.: A Large Image Database for Color Constancy Research. In: Proc. IS&T/SID 11th Color Imaging Conference, pp. 160–164 (2003)Google Scholar
  20. 20.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving Color Constancy Using Indoor-Outdoor Image Classification. IEEE Transactions on Image Processing 17(12), 2381–2392 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hordley, S.D., Finlayson, G.D.: Re-evaluating Color Constancy Algorithms. In: Proc. 17th International Conference on Pattern Recognition, pp. 76–79 (2004)Google Scholar
  22. 22.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization 9, 1082–1099 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lewis, R.M., Torczon, V.: Pattern search methods for linearly constrained minimization. SIAM Journal on Optimization 10, 917–941 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lewis, R.M., Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on Optimization 7, 1–25 (1997)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Cardei, V.C., Funt, B.: Committee-Based Colour Constancy. In: IS&T/SID Seventh Color Imaging Conference: Color Science, Systems and Applications, pp. 311–131 (1999)Google Scholar
  27. 27.
    Bianco, S., Gasparini, F., Schettini, R.: A Consensus Based Framework For Illuminant Chromaticity Estimation. Journal of Electronic Imaging 17(02), 023013 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Simone Bianco
    • 1
  • Gianluigi Ciocca
    • 1
  • Claudio Cusano
    • 1
  1. 1.DISCo (Dipartimento di Informatica, Sistemistica e Comunicazione)Università degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations