Advertisement

A Methodological Specification of a Guideline for Diagnosis and Management of PreEclampsia

  • Avner Hatsek
  • Yuval Shahar
  • Meirav Taieb-Maimon
  • Erez Shalom
  • Adit Dubi-Sobol
  • Guy Bar
  • Arie Koyfman
  • Eitan Lunenfeld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5626)

Abstract

There is a broad agreement regarding the necessity of building usable and functional tools for specification of machine-interpretable clinical guidelines, to provide guideline-based medical care. There is much less of a consensus of how to go about it and whether the whole process is feasible in a real clinical domain. In this study, we have applied a new architecture, the Gesher graphical tool, to the specification of an important Obstetric guideline (diagnosis and management of PreEclampsia / Eclampsia toxemia). We have assessed the feasibility (functionality and usability) of (1) representing a clinical consensus customized for a particular medical center and (2) structuring the full content of the guideline. In addition, we have assessed in a preliminary fashion, the potential of using a less experienced clinician as a markup editor, by asking both a senior Obstetrics and Gynecology clinician, and a general intern, to represent the same guideline using the Gesher system. The results demonstrated the functionality and usability of the Gesher system, at least for these two editors; the intern’s performance was at least as good as that of the senior physician with respect to the specific task of structuring the guideline according to the Hybrid Asbru ontology, using our tools.

Keywords

Clinical Guidelines Clinical Protocols Care Plans Knowledge Representation Knowledge-Based Systems Medical Decision Support Systems Obstetrics and Gynecology Medical Informatics Evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peleg, M., Tu, S.W., et al.: Comparing Computer-Interpretable Guideline Models: A Case-Study Approach. Journal of American Medical Informatics Association 10(1), 52–68 (2002)CrossRefGoogle Scholar
  2. 2.
    De Clercq, P., Blom, J., et al.: Approaches for Creating Computer-Interpretable Guidelines that Facilitate Decision Support. Artificial Intelligence in Medicine 31(1), 1–27 (2004)CrossRefGoogle Scholar
  3. 3.
    Boxwala, A.A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q.T., Wang, D., et al.: GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J. Biomed. Inform. 37(3), 147–161 (2004)CrossRefGoogle Scholar
  4. 4.
    Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical Knowledge: the PROforma approach. Artificial Intelligence in Medicine 14(1), 157–181 (1998)CrossRefGoogle Scholar
  5. 5.
    Shahar, Y., Miksch, S., et al.: Asgaard project: A Task-Specific Framework for the Application and Critiquing of Time-Oriented Clinical Guidelines. Artificial Intelligence In Medicine 14(1-2), 29–51 (1998)CrossRefGoogle Scholar
  6. 6.
    Shahar, Y., Young, O., et al.: A Framework for a Distributed, Hybrid, Multiple-Ontology Clinical-Guideline Library and Automated Guideline-Support Tools. Journal of Biomedical Informatics 37(5), 325–344 (2004)CrossRefGoogle Scholar
  7. 7.
    Hatsek, A., Shahar, Y., et al.: DeGeL: A Clinical-Guidelines Library and Automated Guideline-Support Tools. In: Ten Teije, A., Miksch, S., Lucas, P. (eds.) Computer-based Medical Guidelines and Protocols: A Primer and Current Trends. Studies in Health Technology and Informatics, vol. 139, IOS Press, Amsterdam (2008)Google Scholar
  8. 8.
    Shalom, E., Shahar, Y., et al.: A Quantitative Assessment of a Methodology for Collaborative Specification and Evaluation of Clinical Guidelines. J. Biomed. Inform. 41(6), 889–903 (2008)CrossRefGoogle Scholar
  9. 9.
    Young, O., Shahar, Y., et al.: Runtime Application of Hybrid-Asbru Clinical Guidelines. J. Biomed. Inform. 40(5), 507–526 (2007)CrossRefGoogle Scholar
  10. 10.
    Boaz, D., Shahar, Y.: A Framework for Distributed Mediation of Temporal-Abstraction Queries to Clinical Databases. Artificial Intelligence in Medicine 34(1), 3–24 (2005)CrossRefGoogle Scholar
  11. 11.
    American College of Obstetricians and Gynecologists: Diagnosis and Management of Preeclampsia and Eclampsia. Washington (DC): American College of Obstetricians and Gynecologists (ACOG), January 2002, 9 p. (ACOG practice bulletin; no. 33) (2002)Google Scholar
  12. 12.
    Brooke, J.: SUS - A quick and dirty usability scale (1996), http://www.usability.serco.com/trump/documents/Suschapt.doc

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Avner Hatsek
    • 1
  • Yuval Shahar
    • 1
  • Meirav Taieb-Maimon
    • 1
  • Erez Shalom
    • 1
  • Adit Dubi-Sobol
    • 2
  • Guy Bar
    • 2
  • Arie Koyfman
    • 2
  • Eitan Lunenfeld
    • 2
  1. 1.The Medical Informatics Research CenterBen Gurion UniversityBeer ShevaIsrael
  2. 2.Soroka Medical CenterBen Gurion UniversityBeer ShevaIsrael

Personalised recommendations