From Marriages to Coalitions: A Soft CSP Approach

  • Stefano Bistarelli
  • Simon Foley
  • Barry O’Sullivan
  • Francesco Santini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5655)


In this work we represent the Optimal Stable Marriage problem as a Soft Constraint Satisfaction Problem. In addition, we extend this problem from couples of individuals to coalitions of generic agents, in order to define new coalition-formation principles and stability conditions. In the coalition case, we suppose the preference value as a trust score, since trust can describe the belief of a node in the capabilities of another node, in its honesty and reliability. Semiring-based soft constraints represent a general and expressive framework that is able to deal with distinct concepts of optimality by only changing the related c-semiring structure, instead of using different ad-hoc algorithms. At last, we propose an implementation of the classical OSM problem using integer linear programming tools.


Integer Linear Programming Multiagent System Coalition Formation Trust Relationship Soft Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS, vol. 2962. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  2. 2.
    Bistarelli, S., Martinelli, F., Santini, F.: A semantic foundation for trust management languages with weights: An application to the RT family. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 481–495. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM Trans. Comput. Logic 7(3), 563–589 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and Optimization. Journal of the ACM 44(2), 201–236 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bistarelli, S., O’Sullivan, B.: Combining branch & bound and SBDD to solve soft CSPs. In: Proc. of CP 2004 Fourth International Workshop on Symmetry and Constraint Satisfaction Problems (SymCon 2004) (2004)Google Scholar
  6. 6.
    Bistarelli, S., Santini, F.: Propagating multitrust within trust networks. In: SAC 2008: Proceedings of the 2008 ACM symposium on Applied computing, pp. 1990–1994. ACM, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Breban, S., Vassileva, J.: A coalition formation mechanism based on inter-agent trust relationships. In: AAMAS 2002: Proceedings of the first international joint conference on Autonomous agents and multiagent systems, pp. 306–307. ACM, New York (2002)CrossRefGoogle Scholar
  8. 8.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Brooks/Cole Publishing Company, Monterey (2002)zbMATHGoogle Scholar
  9. 9.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The American Mathematical Monthly 69(1), 9–15 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gent, I.P., Irving, R.W., Manlove, D., Prosser, P., Smith, B.M.: A constraint programming approach to the stable marriage problem. In: Conference on Principles and Practice of Constraint Programming, pp. 225–239. Springer, London (2001)Google Scholar
  11. 11.
    Griffiths, N., Luck, M.: Coalition formation through motivation and trust. In: AAMAS 2003: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, pp. 17–24. ACM, New York (2003)CrossRefGoogle Scholar
  12. 12.
    Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM J. Comput. 16(1), 111–128 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  14. 14.
    Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2004)CrossRefGoogle Scholar
  15. 15.
    Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable marriage. J. ACM 34(3), 532–543 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Iwama, K., Miyazaki, S.: A survey of the stable marriage problem and its variants. In: International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008), pp. 131–136. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  17. 17.
    Iwama, K., Miyazaki, S., Yanagisawa, H.: Approximation algorithms for the sex-equal stable marriage problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 201–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decis. Support Syst. 43(2), 618–644 (2007)CrossRefGoogle Scholar
  19. 19.
    Knuth, D.E.: Stable marriage and its relation to other combinatorial problems: An introduction to the mathematical analysis of algorithms. American Mathematical Society, Providence (1997)Google Scholar
  20. 20.
    Leenen, L., Ghose, A.: Branch and bound algorithms to solve semiring constraint satisfaction problems. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS, vol. 5351, pp. 991–997. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lerman, K., Shehory, O.: Coalition formation for large-scale electronic markets. In: ICMAS, pp. 167–174. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  22. 22.
    Theodorakopoulos, G., Baras, J.S.: Trust evaluation in ad-hoc networks. In: WiSe 2004: Proceedings of the 3rd ACM workshop on Wireless security, pp. 1–10. ACM, New York (2004)CrossRefGoogle Scholar
  23. 23.
    Unsworth, C., Prosser, P.: Specialised constraints for stable matching problems. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, p. 869. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefano Bistarelli
    • 1
    • 2
    • 3
  • Simon Foley
    • 4
  • Barry O’Sullivan
    • 4
    • 5
  • Francesco Santini
    • 1
    • 2
    • 6
  1. 1.Dipartimento di ScienzeUniversità “G. d’Annunzio” di Chieti-PescaraItaly
  2. 2.Istituto di Informatica e Telematica (CNR)PisaItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità di PerugiaItaly
  4. 4.Department of Computer ScienceUniversity College CorkIreland
  5. 5.Cork Constraint Computation CentreUniversity College CorkIreland
  6. 6.IMT - Scuola di Studi Avanzati, LuccaItaly

Personalised recommendations