Advertisement

Grammar-Based Immune Programming for Symbolic Regression

  • Heder S. Bernardino
  • Helio J. C. Barbosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5666)

Abstract

This paper presents a Grammar-based Immune Programming (GIP) that can evolve programs in an arbitrary language using a clonal selection algorithm. A context-free grammar that defines this language is used to decode candidate programs (antibodies) to a valid representation. The programs are represented by tree data structures as the majority of the program evolution algorithms do. The GIP is applied to symbolic regression problems and the results found show that it is competitive when compared with other algorithms from the literature.

Keywords

Artificial immune system grammatical evolution immune programming symbolic regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amarteifio, S., O’Neill, M.: Coevolving antibodies with a rich representation of grammatical evolution. 1, pp. 904–911 (2005)Google Scholar
  2. 2.
    Bernardino, H.S., Barbosa, H.J.C.: Artificial Immune Systems for Optimization. In: Nature-Inspired Algorithms for Optimisation, pp. 389–411. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)CrossRefGoogle Scholar
  4. 4.
    Ciccazzo, A., Conca, P., Nicosia, G., Stracquadanio, G.: An advanced clonal selection algorithm with ad-hoc network-based hypermutation operators for synthesis of topology and sizing of analog electrical circuits. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 60–70. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Proceedings of the 1st International Conference on Genetic Algorithms, Hillsdale, NJ, USA, pp. 183–187. L. Erlbaum Associates Inc., Mahwah (1985)Google Scholar
  6. 6.
    de Castro, L.N., Zuben, F.J.V.: Learning and optimization using the clonal selection principle. IEEE Trans. Evo. Comp. 6(3), 239–251 (2002)CrossRefGoogle Scholar
  7. 7.
    Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. ArXiv Computer Science e-prints (February 2001)Google Scholar
  8. 8.
    Gan, Z., Chow, T.W., Chau, W.: Clone selection programming and its application to symbolic regression. Expert Sys. Appl. 36(2), 3996–4005 (2009)CrossRefGoogle Scholar
  9. 9.
    Gan, Z., Zhao, M.-B., Chow, T.W.: Induction machine fault detection using clone selection programming. Expert Systems with Appl. 36(4), 8000–8012 (2009)CrossRefGoogle Scholar
  10. 10.
    Hoai, N., McKay, R., Essam, D., Chau, R.: Solving the symbolic regression problem with tree-adjunct grammar guided genetic programming: the comparative results, vol. 2, pp. 1326–1331 (2002)Google Scholar
  11. 11.
    Johnson, C.G.: Artificial immune system programming for symbolic regression. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 345–353. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  13. 13.
    Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Synthesis of topology and sizing of analog electrical circuits by means of genetic programming. Computer Methods in Applied Mechanics and Engineering 186(2-4), 459–482 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lau, A., Musilek, P.: Immune programming models of cryptosporidium parvum inactivation by ozone and chlorine dioxide. Info. Sci. 179(10), 1469–1482 (2009)CrossRefGoogle Scholar
  15. 15.
    McKinney, B., Tian, D.: Grammatical immune system evolution for reverse engineering nonlinear dynamic bayesian models. Cancer Inf. 6, 433–447 (2008)Google Scholar
  16. 16.
    Musilek, P., Lau, A., Reformat, M., Wyard-Scott, L.: Immune programming. Information Sciences 176(8), 972–1002 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    O’Neill, M., Brabazon, A.: Grammatical differential evolution. In: Proceedings of the 2006 International Conference on Artificial Intelligence - ICAI 2006, Las Vegas, Nevada, USA, pp. 231–236. CSREA Press (2006)Google Scholar
  18. 18.
    O’Neill, M., Brabazon, A., Adley, C.: The automatic generation of programs for classification problems with grammatical swarm, vol. 1, pp. 104–110 (2004)Google Scholar
  19. 19.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computation 5(4), 349–358 (2001)CrossRefGoogle Scholar
  20. 20.
    O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008)Google Scholar
  22. 22.
    Ryan, C., Collins, J., Neill, M.O.: Grammatical evolution: Evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Smith, S.F.: A learning system based on genetic adaptive algorithms. Ph.D thesis, Pittsburgh, PA, USA (1980)Google Scholar
  24. 24.
    Smith, S.F.: Flexible learning of problem solving heuristics through adaptive search. In: Proc. 8th Int. Joint Conference on Artificial Intelligence (August 1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Heder S. Bernardino
    • 1
  • Helio J. C. Barbosa
    • 1
  1. 1.Laboratório Nacional de Computação CientíficaPetrópolisBrazil

Personalised recommendations