Advertisement

An Error Propagation Algorithm for Ad Hoc Wireless Networks

  • Martin Drozda
  • Sven Schaust
  • Sebastian Schildt
  • Helena Szczerbicka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5666)

Abstract

We were inspired by the role of co-stimulation in the Biological immune system (BIS). We propose and evaluate an algorithm for energy efficient misbehavior detection in ad hoc wireless networks. Besides co-stimulation, this algorithm also takes inspiration from the capability of the two vital parts of the BIS, the innate and the adaptive immune system, to react in a coordinated way in the presence of a pathogen. We demonstrate that this algorithm is also applicable in situations when a (labeled) data set for learning the normal behavior and misbehavior is unavailable.

Keywords

Sensor Network Data Packet Adaptive Immune System Sleep Mode Biological Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yegneswaran, V., Barford, P., Ullrich, J.: Internet intrusions: global characteristics and prevalence. In: Proc. of the 2003 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pp. 138–147 (2003)Google Scholar
  2. 2.
    Anantvalee, T., Wu, J.: A survey on intrusion detection in mobile ad hoc networks. Wireless/Mobile Network Security, 159–180 (2007)Google Scholar
  3. 3.
    Murphy, K., Travers, P., Walport, M.: Janeway’s immunobiology. Garland Pub. (2008)Google Scholar
  4. 4.
    Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger Theory: The Link between AIS and IDS? In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Hofmeyr, S., Forrest, S.: Immunity by design: An artificial immune system. Proc. of Genetic and Evolutionary Computation Conference (GECCO) 2, 1289–1296 (1999)Google Scholar
  6. 6.
    Sarafijanovic, S., Le Boudec, J.: An artificial immune system for misbehavior detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal and memory detectors. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 342–356. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Drozda, M., Schaust, S., Szczerbicka, H.: AIS for Misbehavior Detection in Wireless Sensor Networks: Performance and Design Principles. In: Proc. IEEE Congress on Evolutionary Computation (CEC), pp. 3719–3726 (2007)Google Scholar
  8. 8.
    D’haeseleer, P., Forrest, S., Helman, P.: An Immunological Approach to Change Detection: Algorithms, Analysis and Implications. In: IEEE Symposium on Security and Privacy, pp. 110–119 (1996)Google Scholar
  9. 9.
    Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theor. Comput. Sci. 403(1), 11–32 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kim, J., Bentley, P., Wallenta, C., Ahmed, M., Hailes, S.: Danger Is Ubiquitous: Detecting Malicious Activities in Sensor Networks Using the Dendritic Cell Algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 390–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Drozda, M., Schildt, S., Schaust, S.: An Immuno-Inspired Approach to Fault and Misbehavior Detection in Ad Hoc Wireless Networks. Technical report, Leibniz University of Hannover (2009)Google Scholar
  12. 12.
    Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Perkins, C.E., Royer., E.M.: Ad hoc On-Demand Distance Vector Routing. In: Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999)Google Scholar
  14. 14.
    Feeney, L., Nilsson, M.: Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In: Proc. of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM, vol. 3 (2001)Google Scholar
  15. 15.
    ZigBee Alliance: ZigBee Specification (2005)Google Scholar
  16. 16.
    Hu, Y., Perrig, A., Johnson, D.: Wormhole attacks in wireless networks. IEEE Journal on Selected Areas in Communications 24(2), 370–380 (2006)CrossRefGoogle Scholar
  17. 17.
    Alpaydin, E.: Introduction To Machine Learning. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  18. 18.
    Barr, R., Haas, Z., van Renesse, R.: JiST: an efficient approach to simulation using virtual machines. Software Practice and Experience 35, 539–576 (2005)CrossRefGoogle Scholar
  19. 19.
    Johnson, D., Maltz, D.: Dynamic source routing in ad hoc wireless networks. Mobile Computing 353, 153–181 (1996)CrossRefGoogle Scholar
  20. 20.
    Barrett, C., Drozda, M., Engelhart, D., Kumar, V., Marathe, M., Morin, M., Ravi, S., Smith, J.: Understanding protocol performance and robustness of ad hoc networks through structural analysis. In: Proc. of the IEEE International Conference on Wireless And Mobile Computing, Networking And Communications (WiMob 2005), vol. 3, pp. 65–72 (2005)Google Scholar
  21. 21.
    Schaust, S., Drozda, M.: Influence of Network Payload and Traffic Models on the Detection Performance of AIS. In: Proc. of International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS 2008), pp. 44–51 (2008)Google Scholar
  22. 22.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Proc. of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 935–940 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Drozda
    • 1
  • Sven Schaust
    • 1
  • Sebastian Schildt
    • 1
  • Helena Szczerbicka
    • 1
  1. 1.Simulation and Modeling Group Dept. of Computer ScienceLeibniz University of HannoverHannoverGermany

Personalised recommendations