Advertisement

Managing Diversity on an AIS That Solves 3-Colouring Problems

  • María-Cristina Riff
  • Elizabeth Montero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5666)

Abstract

Constraint Directed Network Artificial Immune System is an artificial immune algorithm, recently proposed, to solve constraint satisfaction problems. The algorithm has shown to be able to solve hard instances. However, some problems are still unsolved using this approach. In this paper, we propose a method to improve the search done by the algorithm. Our method can be included in other immune algorithms which manage constraints. The tests are carried out to solve very hard instances randomly generated of 3-colouring problems. The results show that using our method, the algorithm is able to solve more problems in less execution time.

Keywords

Constraint Satisfaction Constraint Satisfaction Problem Constraint Violation Immune Algorithm Constraint Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Castro, L.N., Timmis, J. (eds.): Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)zbMATHGoogle Scholar
  2. 2.
    Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In: Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI 1991), pp. 163–169 (1991)Google Scholar
  3. 3.
    Craenen, B.G.W., Eiben, A.E., van Hemert, J.I.: Comparing evolutionary algorithms on binary constraint satisfaction problems. IEEE Transactions on Evolutionary Computation 7(5), 424–444 (2003)CrossRefGoogle Scholar
  4. 4.
    Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Dozier, G., Bowen, J., Homaifar, A.: Solving constraint satisfaction problems using hybrid evolutionary search. IEEE Transactions on Evolutionary Computing 2(1), 23–33 (1998)CrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., van Hemert, J.I., Marchiori, E., Steenbeek, A.G.: Solving binary constraint satisfaction problems using evolutionary algorithms with an adaptive fitness function. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 201–205. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Garrett, S.M.: Parameter-free, adaptive clonal selection. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 1052–1058 (2004)Google Scholar
  8. 8.
    Mackworth, A.K.: Consistency in network of relations. Artificial Intelligence 8, 99–118 (1977)CrossRefzbMATHGoogle Scholar
  9. 9.
    Marchiori, E.: Combining constraint processing and genetic algorithms for constraint satisfaction problems. In: Proceedings of the 7th International Conference on Genetic Algorithms (ICGA 1997), pp. 330–337 (1997)Google Scholar
  10. 10.
    Nannen, V., Eiben, A.: Relevance estimation and value calibration of evolutionary algorithm parameters. In: Proceedings of the Joint International Conference for Artificial Intelligence (IJCAI), pp. 975–980 (2007)Google Scholar
  11. 11.
    Riff, M.C.: A network-based adaptive evolutionary algorithm for csp. In: Metaheuristics: Advances and Trends in Local Search Paradigms for Optimisation, ch. 22, pp. 325–339. Kluwer Academic Publisher, Dordrecht (1998)Google Scholar
  12. 12.
    Riff, M.C., Zuniga, M.: Towards an immune system to solve csp. In: Proceedings of the IEEE Congress on Evolutionary Computation, Singapur, pp. 2837–2841 (2007)Google Scholar
  13. 13.
    Smith, B.M., Dyer, M.E.: Locating the phase transition in binary constraint satisfaction problems. Artificial Intelligence 81(1-2), 155–181 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on Evolutionary Computation 6(4), 347–357 (2002)CrossRefGoogle Scholar
  15. 15.
    Tsang, E.P.K., Wang, C.J., Davenport, A., Voudouris, C., Lau, T.L.: A family of stochastic methods for constraint satisfaction and optimization. In: Proceedings of the First International Conference on The Practical Application of Constraint Technologies and Logic Programming (PACLP), London, pp. 359–383 (1999)Google Scholar
  16. 16.
    Minton, S.: Automatically Configuring Constraint Satisfaction Programs: A case study. Constraints 1(1) (1996)Google Scholar
  17. 17.
    Rossi, F., Petrie, C., Dhar, V.: On the equivalence of Constraint-Satisfaction Problems, Technical Report ACT-AI-222-89, MCC Corp., Austin, Texas (1989)Google Scholar
  18. 18.
    Freuder, E.: A sufficient condition of backtrack-free search. J. ACM 29, 24–32 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Freuder, E.: The Many Paths to Satisfaction. In: Meyer, M. (ed.) Constraint Processing. LNCS, vol. 923, pp. 103–119. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  20. 20.
    Haralick, Elliott: Increasing tree search efficiency for Constraint Satisfaction Problems. Artificial Intelligence 14, 263–313 (1980)CrossRefGoogle Scholar
  21. 21.
    Kumar: Algorithms for constraint satisfaction problems: a survey. AI Magazine 13(1), 32–44 (1992)Google Scholar
  22. 22.
    Minton, J., Philips, L.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence 58, 161–205 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Minton, S.: Integrating heuristics for constraint satisfaction problems: A case study. In: Proceedings of the Eleventh National Conference on Artificial Intelligence (1993)Google Scholar
  24. 24.
    Brelaz: New methods to color vertices of a graph. Communications of the ACM 22, 251–256 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • María-Cristina Riff
    • 1
  • Elizabeth Montero
    • 1
  1. 1.Department of Computer ScienceUniversidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations