Unsupervised Structure Damage Classification Based on the Data Clustering and Artificial Immune Pattern Recognition

  • Bo Chen
  • Chuanzhi Zang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5666)


This paper presents an unsupervised structure damage classification algorithm based on the data clustering technique and the artificial immune pattern recognition. The presented method uses time series measurement of a structure’s dynamic response to extract damage-sensitive features for the structure damage classification. The Data Clustering (DC) technique is employed to cluster training data to a specified number of clusters and generate the initial memory cell set. The Artificial Immune Pattern Recognition (AIPR) algorithms are integrated with the data clustering algorithms to provide a mechanism for the evolution of memory cells. The combined DC-AIPR method has been tested using a benchmark structure. The test results show the feasibility of using the DC-AIPR method for the unsupervised structure damage classification.


structural health monitoring unsupervised structure damage classification data clustering artificial immune pattern recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolakowski, P.: Structural Health Monitoring - a Review with the Emphasis on Low-Frequency Methods. IPPT Engineering Transactions 55, 239–275 (2007)Google Scholar
  2. 2.
    Sazonov, E., Janoyan, K., Jha, R.: Wireless intelligent sensor network for autonomous structural health monitoring. Proc. SPIE - Int. Soc. Opt. Eng. 5384, 305–314 (2004)Google Scholar
  3. 3.
    De Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  4. 4.
    Hart, E., Timmis, J.: Application areas of AIS: the past, the present and the future. Applied Soft Computing Journal, 191–201 (2008)Google Scholar
  5. 5.
    Dasgupta, D.: Advances in artificial immune systems. IEEE Computational Intelligence Magazine 1, 40–49 (2006)CrossRefGoogle Scholar
  6. 6.
    Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Transactions on Evolutionary Computation 11, 521–540 (2007)CrossRefGoogle Scholar
  7. 7.
    Watkins, A., Timmis, J., Boggess, L.: Artificial immune recognition system (AIRS): an immune-inspired supervised learning algorithm. Genetic Programming and Evolvable Machines|Genetic Programming and Evolvable Machines 5, 291–317 (2004)CrossRefGoogle Scholar
  8. 8.
    Zhong, Y.F., Zhang, L.P., Gong, J.Y., Li, P.X.: A supervised artificial immune classifier for remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing 45, 3957–3966 (2007)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, D., KrishnaKumar, K., Wong, D., Berry, M.: Negative selection algorithm for aircraft fault detection. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Taylor, D.W., Corne, D.W.: An Investigation of the Negative Selection Algorithm for Fault Detection in Refrigeration Systems. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 34–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Cesana, E., Beltrami, S., Laface, A.E., Urthaler, A., Folci, A., Clivio, A.: Current paradigms in immunology. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds.) WIRN 2005 and NAIS 2005. LNCS, vol. 3931, pp. 244–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Negoita, M.: Artificial immune systems - an emergent technology for autonomous intelligent systems and data mining. In: Gorodetsky, V., Liu, J., Skormin, V.A. (eds.) AIS-ADM 2005. LNCS (LNAI), vol. 3505, pp. 19–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Structural Health Monitoring Benchmark Problem,
  14. 14.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (2008)zbMATHGoogle Scholar
  15. 15.
    Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2, 559–572 (1901)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. on Computers 18, 401–409 (1969)CrossRefGoogle Scholar
  17. 17.
    Chen, B., Zang, C.: Artificial immune pattern recognition for damage detection in structural health monitoring sensor networks. In: Proc. of SPIE: Smart Sensor Phenomena, Technology, Networks, and Systems, San Diego, California (2009)Google Scholar
  18. 18.
    De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6, 239–251 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bo Chen
    • 1
  • Chuanzhi Zang
    • 2
    • 3
  1. 1.Department of Mechanical Engineering – Engineering Mechanics/Department of Electrical & Computer EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Mechanical Engineering – Engineering MechanicsMichigan Technological UniversityHoughtonUSA
  3. 3.Shenyang Institute of AutomationChinese Academy of ScienceShenyangChina

Personalised recommendations