Advertisement

An Immuno-engineering Approach for Anomaly Detection in Swarm Robotics

  • HuiKeng Lau
  • Iain Bate
  • Jon Timmis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5666)

Abstract

In this paper, we present the first stage of our research strategy to develop an immune-inspired solution for detecting anomalies in a foraging swarm robotic system with an immuno-engineering approach. Within immuno-engineering, the initial stage of our research involves the understanding of problem domain, namely anomaly detection, in a foraging swarm robotic system deployed in dynamic environments. We present a systematically derived set of activities for this stage derived with Goal Structuring Notation and results of experiments carried out to establish the time-varying behaviour and how anomalies manifest themselves. Our future work will then be used to select and tailor an appropriate AIS algorithm to provide an effective and efficient means of anomaly detection.

Keywords

Immuno-engineering swarm robotics foraging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.: An investigation of a methodology for the development of artificial immune systems. Ph.D thesis, Department of Computer Science, University of York (2009)Google Scholar
  2. 2.
    Bayindir, L., Sahin, E.: A review of studies in swarm robotics. Turkish Journal of Electrical Engineering and Computer Sciences 15(2) (2007)Google Scholar
  3. 3.
    Christensen, A.: Fault detection in autonomous robots. Ph.D. dissertation (2008)Google Scholar
  4. 4.
    Freitas, A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Trans. on Evolutionary Computation 11(4), 521–540 (2007)CrossRefGoogle Scholar
  5. 5.
    Jacobson, V.: Congestion avoidance and control. ACM Computer Communication Review 18, 314–329 (1988)CrossRefGoogle Scholar
  6. 6.
    Jakimovski, B., Maehle, E.: Artificial immune system based robot anomaly detection engine for fault tolerant robots. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 177–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kelly, T.: Arguing Safety - A Systematic Approach to Safety Case Management. Ph.D thesis, Department of Computer Science, University of York (1999)Google Scholar
  8. 8.
    Lau, H.K., Timmis, J., Bate, I.: Anomaly detection inspired by immune network theory: A proposal. In: Proc. of the 2009 IEEE Congress on Evolutionary Computation (IEEE CEC 2009). IEEE, Los Alamitos (2009)Google Scholar
  9. 9.
    Liu, Y., Passino, K.M.: Swarm intelligence: Literature overview. Technical report, Ohio State University (March 2000)Google Scholar
  10. 10.
    SYMBRION REPLICATOR, http://www.symbrion.eu/
  11. 11.
    Sahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Sahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm Robotics. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence: Introduction and Applications. Natural Computing Series, pp. 87–100. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Segel, L., Cohen, I.: Design Principles for the Immune System and Other Distributed Autonomous Systems. Oxford University Press, USA (2001)Google Scholar
  14. 14.
  15. 15.
    Stepney, S., Smith, R., Timmis, J., Tyrrell, A., Neal, M., Hone, A.: Conceptual frameworks for artificial immune systems. Int’l Journal of Unconventional Computing 1(3), 315–338 (2005)Google Scholar
  16. 16.
    Timmis, J., Hart, E., Hone, A., Neal, M., Robins, A., Stepney, S., Tyrrell, A.: Immuno-engineering. In: Proc. Second IFIP Int’l Conf. on Biologically Inspired Collaborative Computing, pp. 3–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Winfield, A., Nembrini, J.: Safety in numbers: Fault tolerance in robot swarms. Int’l Journal on Modelling Identification and Control 1(1), 30–37 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • HuiKeng Lau
    • 1
    • 3
  • Iain Bate
    • 1
  • Jon Timmis
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of YorkUK
  2. 2.Department of ElectronicsUniversity of YorkHeslingtonUK
  3. 3.School of Engineering and ITUniversiti Malaysia SabahMalaysia

Personalised recommendations