Toward Daydreaming Machines

  • S. I. Ahson
  • A. Buller
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 60)

Abstract

This paper provides some insights related to building a working computational model of human-level mind. We propose to take a fresh look at some ideas propounded more than a century ago by William James and Sigmund Freud, which were recently reconsidered by Peter Naur and ATR Brain-Building Group, respectively. Naur proposes his Synapse-State Theory of Human Mind (SST), while the research at ATR resulted in the Machine Psychodynamic paradigm (M(D). We argue that SST and M(D propose complementary ideas about implementation of mental functionalities, including those related to the quest of consciousness. The 20th-century AI gave machine the ability to learn. The great challenge in the 21th-century AI is to make a robot actually want to learn. M(D proposes a solution based on pleasure defined as a measurable quantity to be used as a general reinforcement. SST proposes a neuroscience-inspired architecture, where the key blocks are item-nodes, attention-node, and specious-present excitation. M(D may supplement SST with a pleasure node and related Pleasure Principle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahson, S.I., Buller, A.: Machine daydreaming: Self-rearrangement of long-term memories. In: Akerkar, R. (ed.) Artificial intelligence – future trends, New Delhi, pp. 179–192. Allied Publ. Pvt. Limited (2002)Google Scholar
  2. 2.
    Ahson, S.I., Buller, A.: Toward machines that can daydream. In: Proc. IEEE conference on human system interaction, Cracow, Poland, pp. 609–614 (2008)Google Scholar
  3. 3.
    Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  4. 4.
    Bentivegna, D., Atkeson, C.G., Ude, A., Cheng, G.: Learning to act from observation and practice. International Journal of Humanoid Robots 1(4), 585–611 (2004)CrossRefGoogle Scholar
  5. 5.
    Braitenberg, V.: Vehicles: experiments in synthetic psychology. MIT Press, Cambridge (1984/1986)Google Scholar
  6. 6.
    Breazeal, C.: Cognitive modeling for bio-mimetic robots. In: Bar-Cohen, Y., Breazeal, C. (eds.) Biologically inspired intelligent robotics, pp. 253–283. SPIE Press, Bellingham (2003)Google Scholar
  7. 7.
    Brooks, R.A.: Flesh and machines: how robots will change us, pp. 48–50. Pantheon Books, New York (2002)Google Scholar
  8. 8.
    Buller, A.: Psychodynamic robot. In: Proc. 2002 FIRA robot world congress, Seoul, pp. 26–30 (2002)Google Scholar
  9. 9.
    Buller, A.: From q-cell to artificial brain. Artificial Life and Robotics 8(1), 89–94 (2004)CrossRefGoogle Scholar
  10. 10.
    Buller, A.: Building brains for robots: a psychodynamic approach. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 70–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Buller, A.: Machine psychodynamics: toward emergent thought. Technical Report TR-NIS-005, ATR Network Informatics Labs, Kyoto (2006)Google Scholar
  12. 12.
    Buller, A.: Mechanisms underlying ambivalence: a psychodynamic model. Estudios de Psicologia 27(1), 49–66 (2006)CrossRefGoogle Scholar
  13. 13.
    Buller, A.: Four laws of machine psychodynamics. In: Dietrich, D., et al. (eds.) Simulating the mind. A technical neuropsychoanalytical approach, pp. 320–331. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Buller, A., Joachimczak, M., Liu, J., Shimohara, K.: ATR Artificial brain project - Progress report. Artificial Life and Robotics 9(4), 197–201 (2005)CrossRefGoogle Scholar
  15. 15.
    Dawkins, R.: The selfish gene. Oxford University Press, Oxford (1976/1999)Google Scholar
  16. 16.
    Dennet, D.C.: Kind of minds: towards an understanding of consciousness (1996), http://en.wikipedia.org/wiki/DanielDennett (accessed April 4, 2009)
  17. 17.
    Farthing, G.W.: The psychology of consciousness. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  18. 18.
    Freud, S.: An outline of psycho-analysis. W. W. Norton & Company, New York (1940/1989)Google Scholar
  19. 19.
    Griffin, D.: Animal thinking. Harward University Press, Cambridge (1984)Google Scholar
  20. 20.
    Haikonen, P.: Robot brains: circuits and systems for conscious machines. J. Wiley & Sons, Chichester (2007)Google Scholar
  21. 21.
    James, W.: The principles of psychology. Dover Publications, Inc., New York (1890/1950)Google Scholar
  22. 22.
    Johnson-Laird, P.N.: Mental models. Cambridge University Press, Cambridge (1983)Google Scholar
  23. 23.
    Kandel, E.R.: Biology and the future of psychoanalysis - a new intellectual framework for psychiatry revisited. In: Kandel, E.C. (ed.) Psychiatry, psychoanalysis and the new biology of mind, pp. 63–106. American Psychiatric Publishing, Inc., Washington (2005)Google Scholar
  24. 24.
    Koch, C.: The quest of consciousness: a neurobiological approach. Roberts & Co. Publishers, Englewood (2004)Google Scholar
  25. 25.
    Liu, J., Buller, A., Joachimczak, M.: Self-motivated learning agent – Skill-development in a growing network mediated by pleasure and tensions. Transactions of the Institute of Systems, Control and Information Engineers 19(5), 169–176 (2006)MATHGoogle Scholar
  26. 26.
    Minsky, M.: The emotion machine. Simon & Schuster, New York (2006)Google Scholar
  27. 27.
    Naur, P.: A synaptic-state theory of human mind (2004), www.naur.com/synapse-state.pdf (accessed April 4, 2009)
  28. 28.
    Naur, P.: Computing versus human thinking. Communications of the ACM 50(1), 85–94 (2007)CrossRefGoogle Scholar
  29. 29.
    Palensky, P., Lorenz, B., Clarici, A.: Cognitive and affective automation: Machines using the psychoanalytic model of human mind. In: Proc. 1st intern. engineering & neuro-psychoanalysis forum (ENF 2007), Vienna, pp. 49–73 (2007)Google Scholar
  30. 30.
    Sloman, A.: Architectural requirements for human-like agent both natural and artificial (What sort of machine can love). School of Computer Science, University of Birmingham (1999)Google Scholar
  31. 31.
    Stone, M., Hirsh, H.: Artificial intelligence: the next twenty five years. AI Magazine 26(4), 85–97 (2005)Google Scholar
  32. 32.
    Weng, J.: Developmental robotics: theory and experiments. International Journal of Humanoid Robots 1(2), 199–236 (2004)CrossRefGoogle Scholar
  33. 33.
    Yang, Y., Bringsjord, S.: Newell’s program, like Hilbert’s, is dead; let’s move on. Behavioral and Brain Sciences 26(5), 627 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. I. Ahson
    • 1
  • A. Buller
    • 2
  1. 1.Patna UniversityPatnaIndia
  2. 2.Cama-SoftGdyniaPoland

Personalised recommendations