Advertisement

Control Configuration Selection of Linear Multivariable Plants: The RGA Approach

  • Ali Khaki-Sedigh
  • Bijan Moaveni
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 391)

Abstract

The RGA was proposed by Bristol in 1966 to facilitate the design of decentralized control systems by determining the control system configurations with minimal interactions.

Keywords

Closed Loop Steady State Error Relative Gain Loop Gain Internal Model Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bristol, E.H.: On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 11, 133–134 (1966)CrossRefGoogle Scholar
  2. Campo, P.J., Morari, M.: Achievable closed loop properties of systems under decentralized control: Conditions involving the steady state gain. IEEE Trans. Autom. Control 39, 932–943 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. Chang, J.W., Yu, C.C.: The relative gain for non-square multivariable systems. Chem. Eng. Sci. 45, 1309–1323 (1990)CrossRefGoogle Scholar
  4. Chiu, M.S., Arkun, Y.: Decentralized control structure selection based on integrity considerations. Ind. Eng. Chem. Res. 29, 369–373 (1990)CrossRefGoogle Scholar
  5. Grosdidier, P., Morari, M., Holt, B.R.: Closed-loop properties from steady state gain information. Ind. Eng. Chem. Fundam. 24, 221–235 (1985)CrossRefGoogle Scholar
  6. Hovd, M., Skogestad, S.: Simple frequency-dependent tools for control system analysis, structure selection and design. Automatica 28, 989–996 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. Hovd, M., Skogestad, S.: Pairing criteria for decentralized control of unstable plants. Ind. Eng. Chem. Res. 33, 2134–2139 (1994)CrossRefGoogle Scholar
  8. Johansson, K.H.: The Quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Trans. Control Syst. Technol. 8, 456–465 (2000)CrossRefGoogle Scholar
  9. Kariwala, V., Hovd, M.: Relative Gain Array: Common misconceptions and clarifications. In: Proceedings of the 7th Symposium on Computer Process Control, Lake Louise, Canada (2006)Google Scholar
  10. Kinnaert, M.: Interaction measures and pairing of controlled and manipulated variables for multiple-input-multiple-output systems: a survey. Journal A 36, 15–23 (1995)Google Scholar
  11. Mc Avoy, T., Arkun, Y., Chen, R., Robinson, D., Schnelle, P.D.: A new approach to defining a dynamic relative gain. Control Eng. Pract. 11, 907–914 (2003)CrossRefGoogle Scholar
  12. Maciejowski, J.M.: Multivariable feedback design. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  13. Morari, M., Zafiriou, E.: Robust process control. Prentice-Hall, New Jersey (1989)Google Scholar
  14. Niederlinski, A.: A heuristic approach to the design of linear multivariable interacting control systems. Automatica 7, 691–701 (1971)zbMATHCrossRefGoogle Scholar
  15. Porter, B., Khaki-Sedigh, A.: Robustness properties of tunable digital set-point tracking PID controllers for linear multivariable plants. Int. J. Control 49, 777–789 (1989)zbMATHMathSciNetGoogle Scholar
  16. Reeves, D.E., Arkun, Y.: Interaction measure for nonsquare decentralized control structures. AIChE Journal 35, 603–613 (1989)CrossRefGoogle Scholar
  17. Skogestad, S., Hovd, M.: Use of frequency-dependent RGA for control structure selection. In: Proceeding of the American Control Conference, pp. 2133–2139 (1990)Google Scholar
  18. Skogestad, S., Morari, M.: Implications of large RGA elements on control performance. Ind. Eng. Chem. Res. 26, 2323–2330 (1987)CrossRefGoogle Scholar
  19. Skogestad, S., Morari, M.: Variable selection for decentralized control. Modeling, Identification, and Control 13, 113–125 (1992)CrossRefGoogle Scholar
  20. Skogestad, S., Postlethwaite, I.: Multivariable feedback control analysis and design. Wiley, Chichester (2005)Google Scholar
  21. Treiber, S., Hoffman, D.W.: Multivariable constraint control using a frequency domain design approach. In: Proceeding of the 3rd conference on Chem. Proc. Control, Amsterdam (1986)Google Scholar
  22. Wood, R.K., Berry, M.W.: Terminal composition control of a binary distillation column. Chem. Eng. Sci. 28, 1707–1717 (1973)CrossRefGoogle Scholar

Copyright information

© Springer London 2009

Authors and Affiliations

  • Ali Khaki-Sedigh
    • Bijan Moaveni

      There are no affiliations available

      Personalised recommendations