Advertisement

A Comparative Study of Argumentation- and Proposal-Based Negotiation

  • Angelika Först
  • Achim Rettinger
  • Matthias Nickles
Part of the Studies in Computational Intelligence book series (SCI, volume 233)

Summary

Recently, argumentation-based negotiation has been proposed as an alternative to classical mechanism design. The main advantage of argumentation-based negotiation is that it allows agents to exchange complex justification positions rather than just simple proposals. Its proponents maintain that this property of argumentation protocols can lead to faster and beneficial agreements when used for complex multiagent negotiation. In this paper, we present an empirical comparison of argumentation-based negotiation to proposal-based negotiation in a strategic two-player scenario, using a game-theoretic solution as a benchmark, which requires full knowledge of the stage games. Our experiments show that in fact the argumentation-based approach outperforms the proposal-based approach with respect to the quality of the agreements found and the overall time to agreement.

Keywords

Multiagent System Negotiation Strategy Nash Bargaining Solution Average Reward Communication Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiß, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)Google Scholar
  2. 2.
    Sandholm, T.W.: Distributed rational decision making. In: Weiß, G. (ed.) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pp. 201–258. MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Jennings, N.R., Parsons, S., Noriega, P., Sierra, C.: On argumentation-based negotiation. In: Proceedings of the International Workshop on Multi-Agent Systems, Boston, USA (1998)Google Scholar
  4. 4.
    Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, L.: Argumentation-based negotiation (2004)Google Scholar
  5. 5.
    Rahwan, I., Sonenberg, L., McBurney, P.: Bargaining and argument-based negotiation: Some preliminary comparisons. In: Proceedings of the AAMAS Workshop on Argumentation in Multi-Agent Systems, New York (2004)Google Scholar
  6. 6.
    Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: Context and recent developments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2006. LNCS, vol. 4766, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Murray, C., Gordon, G.: Multi-robot negotiation: Approximating the set of subgame perfect equilibria in general sum stochastic games. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge (2007)Google Scholar
  8. 8.
    Wang, X., Sandholm, T.: Reinforcement learning to play an optimal nash equilibrium in team markov games. In: Becker, S.T.S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 1571–1578. MIT Press, Cambridge (2003)Google Scholar
  9. 9.
    Nash, J.F.: The bargaining problem. Econometrica 18(2), 155–162 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in electronic commerce. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS, vol. 1991, p. 19. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Kraus, S.: Automated negotiation and decision making in multiagent environments. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS, vol. 2086, pp. 150–172. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Eatwell, J., Milgate, M., Newman, P. (eds.): The New Palgrave: A Dictionary of Economics, vol. 2. Macmillan, London (1987)Google Scholar
  13. 13.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, London (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Angelika Först
    • 1
  • Achim Rettinger
    • 1
  • Matthias Nickles
    • 2
  1. 1.Department of InformaticsTechnische Universität MünchenGarchingGermany
  2. 2.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations