Advertisement

A GPU-Based Simulation of Tsunami Propagation and Inundation

  • Wen-Yew Liang
  • Tung-Ju Hsieh
  • Muhammad T. Satria
  • Yang-Lang Chang
  • Jyh-Perng Fang
  • Chih-Chia Chen
  • Chin-Chuan Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5574)

Abstract

Tsunami simulation consists of fluid dynamics, numerical computations, and visualization techniques. Nonlinear shallow water equations are often used to model the tsunami propagation. By adding the friction slope to the conservation of momentum, it also can model the tsunami inundation. To solve these equations, we use the second order finite difference MacCormack method. Since it is a finite difference method, it brings the possibility to be parallelized. We use the parallelism provided by GPU to speed up the computations. By loading data as textures in GPU memory, the computation processes can be written as shader programs and the operations will be done by GPU in parallel. The results show that with the help of GPU, the simulation can get a significant improvement in the execution time for each of the computation steps.

Keywords

scientific applications tsunami simulation shallow water equations MacCormack method GPU-based implementations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tan, W.Y.: Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for Two-Dimensional System of Shallow Water Equations. Elsevier Science Publishers, Amsterdam (1992)Google Scholar
  2. 2.
    Hagen, T.R., Hjelmervik, J.M., Lie, K.A., Natvig, J.R., Henriksen, M.O.: Visual simulation of shallow water waves. Simulation Modelling Practice and Theory 13(8), 716–726 (2005)CrossRefGoogle Scholar
  3. 3.
    Kass, M., Miller, G.: Rapid, Stable Fluid Dynamics for Computer Graphics. ACM SIGGRAPH Computer Graphics 24(4), 49–57 (1990)CrossRefGoogle Scholar
  4. 4.
    Layton, A.T., van de Panne, M.: A Numerically Efficient and Stable Algorithm for Animating Water Waves. The Visual Computer 18(1), 41–53 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. In: Caughey, D.A., Hafez, M.M. (eds.) Frontiers of Computational Fluid Dynamics 2002, pp. 27–43. World Scientific, Singapore (2002)Google Scholar
  6. 6.
    Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Dynamics and Heat Transfer, 2nd edn. Taylor & Francis, Abington (1997)zbMATHGoogle Scholar
  7. 7.
    Walendziuk, W., Jordan, A., Skorek, A.: Visualization of the Parallel Finite-Difference Time-Domain Method Computation Results. In: International Conference on Parallel Computing in Electrical Engineering (PARELEC), pp. 152–155 (2004)Google Scholar
  8. 8.
    Rost, R.J., Kessenich, J.M., Lichtenbelt, B.: OpenGL Shading Language. Addison-Wesley, Reading (2004)Google Scholar
  9. 9.
    Karsten, O.N., Trier, P.: Implementing Rapid, Stable Fluid Dynamics on the GPU (2004), http://projects.n-o-e.dk/GPUwatersimulation/gpu-water.pdf
  10. 10.
    Kuo, Y.T., Shih, Z.C.: The Simulation of Tsunami Wave Propagation. In: IEEE International Symposium on Multimedia Workshops, pp. 3–8 (2007)Google Scholar
  11. 11.
    Chow, V.T.: Open Channel Hydraulics. McGraw-Hill, New York (1959)Google Scholar
  12. 12.
    Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Anderson, J.D.: Computational Fluid Dynamics: The Basics with Applications. McGrawHill, New York (1995)Google Scholar
  14. 14.
    Kowalik, Z., Murty, T.S.: Numerical Modeling of Ocean Dynamics. Advanced Series on Ocean Engineering, vol. 5. World Scientific, Singapore (1993)Google Scholar
  15. 15.
    Fernandes, A.R.: GLSL Tutorial, http://www.lighthouse3d.com/opengl/glsl/
  16. 16.
    Ahn, S.H.: OpenGL Frame Buffer Object (FBO), http://www.songho.ca/opengl/gl_fbo.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wen-Yew Liang
    • 1
  • Tung-Ju Hsieh
    • 1
  • Muhammad T. Satria
    • 1
  • Yang-Lang Chang
    • 2
  • Jyh-Perng Fang
    • 2
  • Chih-Chia Chen
    • 2
  • Chin-Chuan Han
    • 3
  1. 1.Department of Computer Science and Information EngineeringTaiwan
  2. 2.Department of Electrical EngineeringNational Taipei University of TechnologyTaiwan
  3. 3.Department of Computer Science and Information EngineeringNational United UniversityTaiwan

Personalised recommendations