A Parallel Simulated Annealing Approach for Floorplanning in VLSI

  • Jyh-Perng Fang
  • Yang-Lang Chang
  • Chih-Chia Chen
  • Wen-Yew Liang
  • Tung-Ju Hsieh
  • Muhammad T. Satria
  • Chin-Chuan Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5574)


One of the critical issues in floorplanning is to minimize area and/or wire length of a given design with millions of transistors while considering other factors which may influence the success of design flow or even manufacturing. To deal with the floorplan design with enormous amount of interconnections and design blocks, we adopt a parallel computing environment to increase the throughput of solution space searching. Also, we include the fractional factorial analysis to further reduce the time needed to search the acceptable solution. The experimental results indicate that our approach can obtain better space utility rate and it takes less time than the traditional method and parallel method do.


Floorplanning FFA Parallel Computing Simulated Annealing OpenMP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wong, D.F., Liu, C.L.: A New Algorithm for Floorplan Design. In: Proc. Design Automation Conf., Las Vegas, NV, USA, July 1986, pp. 101–107 (1986)Google Scholar
  2. 2.
    Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: Rectangle-Packing Based Module Placement. In: Int’l Conf. on Computer-Aided Design, San Jose, CA, USA, November 1995, pp. 472–479 (1995)Google Scholar
  3. 3.
    Guo, P.-N., Cheng, C.-K., Yoshimura, T.: An O-tree Representation of Non-Slicing Floorplan and Its Application. In: Proc. Design Automation Conf., New Orleans, LA, USA, June 1999, pp. 268–273 (1999)Google Scholar
  4. 4.
    Chang, Y.C., Chang, Y.-W., Wu, G.-M., Wu, S.-W.: B*-tree: A new Representation for Non-Slicing Floorplans. In: Proc. Design Automation Conf., Los Angeles, CA, June 2000, pp. 458–463 (2000)Google Scholar
  5. 5.
    Bai, G., Bobba, S., Hajj, I.N.: Simulation and Optimization of the Power Distribution Network in VLSI Circuits. In: Proc. Int’l Conf. on Computer-Aided Design, San Jose, CA, USA, November 2000, pp. 481–486 (2000)Google Scholar
  6. 6.
    Fang, J.P., Tong, Y.S., Chen, S.J.: Simultaneous Routing and Buffering in Floorplan Design. In: IEE Proc. Computers and Digital Techniques, January 2004, vol. 151, pp. 17–22 (2004)Google Scholar
  7. 7.
    Fang, J.P., Tong, Y.S., Chen, S.J.: An Enhanced BSA for Floorplanning. IEICE Trans. Fundamentals E89-A(2), 528–534 (2006)CrossRefGoogle Scholar
  8. 8.
    Liu, I.-M., Chen, H.-M., Chou, T.-L., Aziz, A., Wong, D.F.: Integrated Power Supply Planning and Floorplanning. In: Proc. Conf. on Asia South Pacific Design Automation, Yokohama, Japan, January 2001, pp. 589–594 (2001)Google Scholar
  9. 9.
    Lou, J., Thakur, S., Krishnamoorthy, S., Sheng, H.S.: Estimating Routing Congestion Using Probabilistic Analysis. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 21(1), 32–41 (2002)CrossRefGoogle Scholar
  10. 10.
    Sham, C.W., Wong, W.C., Young, E.F.Y.: Congestion Estimation with Buffer Planning in Floorplan Design. In: Proc. Design Automation and Test in Europe Conf. and Exhibition, Paris, France, March 2002, pp. 696–701 (2002)Google Scholar
  11. 11.
    Ho, S.-Y., Ho, S.-J., Lin, Y.-K., Chu, C.-C.: An Orthogonal Simulated Annealing Algorithm for Large Floorplanning Problems. IEEE Trans. VLSI systems 12(8), 874–876 (2004)CrossRefGoogle Scholar
  12. 12.
    Tang, M., Lau, R.Y.K.: A parallel Genetic Algorithm for Floorplan Area Optimization. In: Proc. the 7th International Conference on Intelligent Systems Design and Applications, Rio, Brazil, October 2007, pp. 801–806 (2007)Google Scholar
  13. 13.
    Lee, S.-Y., Lee, K.G.: Synchronous and Asynchronous Parallel Simulated Annealing with Multiple Markov Chains. IEEE Trans, Parallel and Distributed Systems 7(10), 993–1008 (1996)CrossRefGoogle Scholar
  14. 14.
    Janaki Ram, D., Sreenivas, T.H., Ganapathy Subramaniam, K.: Parallel Simulated Annealing Algorithms. Journal of Parallel and Distributed Computing 37(2), 207–212 (1996)CrossRefGoogle Scholar
  15. 15.
    Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous Computing and Parallel Genetic Algorithms. Journal of Parallel and Distributed Computing 62(9), 1362–1385 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Fang, J.P., Chang, Y.-L., Ren, H., Lin, C.-C., Liang, W.-Y., Fang, J.-F.: A simulated annealing Band Selection Approach for Hyperspectral Imagery. In: Proc. SPIE, Sensors and Applications, Optics East, Boston, Massachusetts, USA (October 2006)Google Scholar
  17. 17.
    Chang, Y.-L., Fang, J.P., Ren, H., Liang, W.-Y., Liu, J.-N.: A Simulated Annealing Feature Extraction Approach for Hyperspectral Images. In: Proc. IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain (July 2007)Google Scholar
  18. 18.
  19. 19.
    Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. John Wiley & Sons, New York (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jyh-Perng Fang
    • 1
  • Yang-Lang Chang
    • 1
  • Chih-Chia Chen
    • 1
  • Wen-Yew Liang
    • 2
  • Tung-Ju Hsieh
    • 2
  • Muhammad T. Satria
    • 2
  • Chin-Chuan Han
    • 3
  1. 1.Dept. of Elec. Eng.National Taipei Univ. of Tech.Taiwan
  2. 2.Dept. of Comp. Sci. and Info. Eng.National Taipei Univ. of Tech.Taiwan
  3. 3.Dept. of Comp. Sci. and Info. Eng.National United Univ.Taiwan

Personalised recommendations