Advertisement

Shear instabilities in Taylor-Couette flow

  • A. MeseguerEmail author
  • F. Mellibovsky
  • F. Marques
  • M. Avila
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 132)

Summary

Subcritical instabilities in small gap Taylor-Couette (TCF) problem are studied numerically when both cylinders rotate in opposite directions. The computations are carried out for a radius ratio \(\eta = r_{{\rm i}}/r_{{\rm o}} = 0.883.\) A first exploration is focused on the study of spiral flows originated from subcritical Hopf bifurcations of the basic circular Couette solution. The second exploration addresses the transition from laminar flow to the usually termed as spiral turbulence regime characterized by alternating laminar and turbulent spiral bands which coexist even in regions of the parameter space where the circular Couette flow is linearly stable.

Keywords

Radius Ratio Shear Instability Subcritical Hopf Bifurcation Axial Wave Number Azimuthal Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Andereck, et al., J. Fluid Mech., 164, 155 (1986).CrossRefADSGoogle Scholar
  2. 2.
    D. Coles, J. Fluid Mech., 21, 385 (1965).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    A. Meseguer, et al., Eur. Phys. J. Special Topics, 146 249 (2007).CrossRefADSGoogle Scholar
  4. 4.
    A. Prigent et al., Phys. Rev. Lett., 89(1) 014501 (2002).CrossRefADSGoogle Scholar
  5. 5.
    C. Van Atta, J. Fluid Mech., 25, 495 (1966).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Meseguer
    • 1
    Email author
  • F. Mellibovsky
    • 1
  • F. Marques
    • 1
  • M. Avila
    • 2
  1. 1.Dept. Applied PhysicsUniversitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Max Planck Inst. for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations